PED: pressurized electroosmotic dewatering

Leon William Heath
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Civil Engineering Commons, and the Geotechnical Engineering Commons

Recommended Citation

Heath, Leon William, "PED: pressurized electroosmotic dewatering " (1985). Retrospective Theses and Dissertations. 12072.
https://lib.dr.iastate.edu/rtd/12072

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large she t and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

Heath, Leon William

PED: PRESSURIZED ELECTROOSMOTIC DEWATERING

PH.D. 1985
University
Microfilms
International 300 N. Zeeb Road. AnA Arbor, M M 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad 1.

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Pages) \qquad lacking when material received, and not available from school or author.
12. Page (s) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Dissertation contains pages with print at a slant, filmed as received \qquad
16. Other \qquad
\qquad

PED: Pressurized electroosmotic dewatering

by

Leon William Heath

A Dissertation Submitted to the
 Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

Department: Civil Engineering Major: Geotechnical Engineering

Approved:

Signature was redacted for privacy.
In Charge of Major Work
Signature was redacted for privacy.
' For the Major Department
Signature was redacted for privacy.
For the Graduate College

Iowa State University
Ames, Iowa
1985

DOE Report IS-T-1223. The research on ultra-fine coal suspension dewatering has been performed for the Ames Laboratory, operated under Contract Number $W-7405-$ Eng -82 , and is supported by the Assistant Secretary of Fossil Energy, Division of Coal Utilization, through the Pittsburgh Energy Technology Center, Coal Preparation Branch.

The opinions, findings and conclusions expressed in this publication are those of the author and not necessarily those of the Pittsburgh Energy Technology Center, Department of Energy.

TABLE OF CONTENTS

Page
GENERAL INTRODUCTION 1
Explanation of Dissertation Format 2
PART I. PRESSURIZED ELECTROOSMOTIC DEWATERING (PED) 4
ABSTRACT 5
INTRODUCTION 7
THEORY 9
EXPERIMENTAL APPARATUS AND TESTING PROCEDURE 12
RESULTS AND DISCUSSION 14
Materials 14
Zeta Potential Modification 14
Pressurized Electroosmotic Dewatering 16
CONCLUSIONS 21
ACKNOWLEDGEMENT 22
LITERATURE CITED 23
PART II. AUGMENTING RESEARCH WITH A MICROCŪMPÜTER 24
ABSTRACT 25
INTRODUCTION 27
SCOPE OF STUDY 28
SYSTEM ORGANIZATION 29
Hardware 29
Software 29
DISCUSSION 36
CONCLUSION 38
ACKNOWLEDGEMENT 39
Page
PART III. FINE COAL DEWATERING BY PRESSURIZED ELECTROOSMOSIS 40
ABSTRACT 41
INTRODUCTION 43
THEORETICAL ASPECTS OF PED 45
RESULTS AND DISCUSSION 47
CONCLUSIONS 57
ACKNOWLEDGEMENT 58
LITERATURE CITED 59
GENERAL SUMMARY AND RECOMMENDATIONS 60
REFERENCES 63
ACKNOWLEDGEMENTS 64
APPENDIX A. COMPUTER SOFTWARE DEVELOPED TO CONDUCT RESEARCH 65
APPENDIX B. CLARIFICATION ADDITIONS 99

GENERAL INTRODUCTION

There have been numerous attempts made in modifying mechanical separation processes of liquids from fine-particulate suspensions. The resulting processes are usually expensive or impractical. Many of these suspensions are waste products that require enormous storage impoundments because of the incurred large volume resulting from poor or no solid/liquid separation. Moreover, some of these fine-grained suspensions are marketable products if the solids can be recovered. If the solids must be recovered to obtain the product, state-of-the-art processes are costly which, obviously, is passed on to the consumers.

In addition, these slurried materials present handling problems that are solved, again, with some more costly method than if the material were solidified. Impoundment of waste slurries also may pose a problem, depending on the material, in the leaching potential of heavy metals or toxic chemicals into the groundwater supply.

Originally, this project addressed the dewatering of sewage sludge. However, funding opportunities led to dewatering coal sludge and resulted in a patent application for the pressurized electroosmotic dewatering (PED) process. It was found that the combination of the two dewatering mechanisms was synergistic. The coal sludge dewatering project defined those slurry characterists which could be modified prior to dewatering such that the PED process could be optimized and developed into a cost effective, continuous dewatering process.

The current project concerns the dewatering of ultra-fine coal suspensions and is addressed herein. This project was funded by the U. S.

Department of Energy (DOE) and was once of major interest since presently, 10 to 15 percent of the coal mined in the United States is discarded because of its fineness and the associated dewatering difficulties. Although dewatering is still an important industrial problem, it is no longer of any major concern to the DOE since research interests are now directed towards direct combustion of coal-water-mixtures (CWM).

Explanation of Dissertation Format

The dissertation is composed of three separate papers and supplementary appendixes.

Part I, "Pressurized Electroosmotic Dewatering (PED)" was an invited presentation at the Engineering Foundation Conference on "Flocculation, Sedimentation and Consolidation", on January 31, 1985 at Sea Island, Georgia. The paper has been formally reviewed and accepted for publication.

Part II, "Augmenting Research with a Microcomputer" has been accepted for presentation at the American Society of Civil Engineers' Third National Conference on Microcomputers in Civil Engineering to be held November 4 to 6, 1985 at Orlando, Florida. The paper will be submitted for review and publication at the conference conclusion.

Part III, "Fine Coal Dewatering by Pressurized Electroosmosis" has been accepted for presentation at the Engineering Foundation Conference on "Science and Technology of Processing Fine Coal" on August 15, 1985 at New England College, Henniker, New Hampshire. The paper will be submitted for review and publication at the conference conclusion.

Appendix A presents the software developed to conduct the research. Also included is that software modified to improve the microcomputer-mainframe communications and to enable re-addressable files to be stcred on a floppy disc.

Appendix B includes those items that page limitations of the publications required the omission of and are included in this publication for clarification purposes.

PART I. PRESSURIZED ELECTROOSMOTIC DEHATERING (PED)

Abstract

Laboratory bench tests are being conducted to optimize pressurized electroosmotic dewatering (PED) of ultra-fine coal suspensions. The tests show that PED increases the dewatering rate and decreases the final moisture content as compared to conventional processes. Other slurries, slimes and sludges have also been dewatered using the PED process and the results have proven that the PED process is effective with a variety of materials and suspensions. Optimization of the PED process will be used to develop a cost effective, continuous dewatering process for fine-particle suspensions.

PRESSURIZED ELECTROOSMOTIC DEWATERING (PED)

Leon W. Heath ${ }^{1}$ and Turgut Demirel ${ }^{2}$

Ames Laboratory*
Iowa State University
Ames, Iowa 50011
*Operated for the U.S. Department of Energy by Iowa State University Contract No. W-7405-Eng-82

[^0]
INTRODUCTION

Many industrial processes produce large quantities of suspended fine-grained material that is usually rejected as waste. Much of this waste is useful material that is only rejected because of the filtration difficulties and handling problems presented by its fineness. For example, over half of the coal produced in the United States is processed through preparation plants in which up to 25 percent is discarded. With the introduction of new deep cleaning methods, larger quantities of fine coal will be generated and thus, wasted. A majority of the material is recoverable, but because state-of-the-art dewatering techniques cannot sufficiently dewater the suspensions, subsequent expensive thermal drying is required for further utilization and handling.

Disposal of waste slurries requires enormous impoundments if the suspending liquid is not removed. This quickly becomes uneconomical because of the land that must be committed only to disposal purposes. Another problem that exists is the possibility of groundwater contamination by leachates from these disposal sites. Therefore, industry is presssed to find an economical method of dewatering recoverable fines and waste for utilization, economic land usage and environmental reasons.

Although many solid/liquid separation processes have been studied in an attempt to modify the processes to dewater suspensions of fine-grained material, electroosmosis and the belt filter press show the greatest promise (1-4). Previous research by the authors has shown that the combination of electroosmosis and pressure is very effective in dewatering coal sludge, a fine-grained waste material (5). The marriage of the two
dewatering mechanisms enhance the dewatering rate and overall moisture reduction. The coal sludge was not physically or chemically altered prior to dewatering. However, the tests indicated that parameters such as particle size distribution and zeta potential could be modified to substantially improve the PED process.

Therefore, the ongoing research is investigating the parameters which affect the PED process and how effective the modifications of those parameters are. These results will then be used to optimize the process such that equipment and operational procedures can be developed to effectively and economically dewater slurries, slimes and sludges in a continuous process. Once the PED process is developed into a continuous process and employed on an industrial scale, utilization of recovered fine material, that is currently wasted, will be enhanced, environmental problems and disposal site sizes will be reduced and handling problems will be alleviated.

Many of the industries that are forced to deal with fine-particulate slurries, prepare or process raw material. Thus, elimination of the associated problems and utilization of recovered material will reduce the overall cost which, in turn, should reduce the consumer's cost.

THEORY

One of the most widely used theoretical expressions for electroosmosis was introduced by Helmholtz and later refined by Smoluchowski. The Helmholtz-Smoluchowski equation for electroosmotic flow rate of water through a porous medium is

$$
\begin{align*}
& Q_{e}=k_{e} i_{e} A, m^{3} / \mathrm{s} \tag{1}\\
& \text { where } \quad k_{e}=n \varepsilon \zeta / \mu, m^{2} / \mathrm{V} \cdot \mathrm{~s} \tag{2}\\
& i_{e}=E / \mathrm{L}, \mathrm{~V} / \mathrm{m} \tag{3}
\end{align*}
$$

Equation (1) is similar to Darcy's hydraulic flow equation which is

$$
\begin{gathered}
Q_{h}=k_{h} i_{h} A, m^{3} / \mathrm{s} \\
\text { where } k_{h}=\rho g R^{2} n / 8 \mu, \mathrm{~m} / \mathrm{s} \\
i_{h}=H / L, \text { dimensionless } \\
\rho=\text { mass density of liquid, } \mathrm{kg} / \mathrm{cm}^{3} \\
\mathrm{~g}=\text { gravitational acceleration, } \mathrm{m} / \mathrm{s}^{2} \\
\mathrm{R}=\text { capillary radius, } \mathrm{m} \\
\mathrm{H}=\text { total headioss in distance } \mathrm{L}, \mathrm{~m}
\end{gathered}
$$

The main difference is that in the Helmholtz-Smoluchowski equation, k_{e} is theoretically independent of pore sizes whereas in Darcy's equation, k_{h} is directly proportional to the square of the pore size. However, Winterkorn and Fang show that $n=R S / 2$, where S is the specific surface area per unit volume (6). Substituting this expression into Equations (2) and (5) shows that the electroosmotic flow rate is dependent on the pore radius, but the hydraulic flow rate is more dependent on pore size since it becomes a function of the radius cubed. Hence, it can be seen that an electrical potential can more easily transport water through fine-grained material than can a hydraulic potential.

When a saturated, particulate matrix is electroosmotically dewatered, consolidation must occur with a decrease in volume equivalent to the quantity of water removed. This assumes saturation is maintained. However, for consolidation to occur, an increase in the effective stress should take place. Thus, if the total stress remains constant, negative pore pressures should develop in the compressed layer near the anode. However, at the open cathode, there is no change in either the pore pressure or total stress. With this difference in pore pressure a hydraulic gradient is induced which opposes the electroosmotic flow. Thus, water will continue to flow as long as the electroosmotic driving force remains greater than the induced hydraulic gradient, but will cease once an equilibrium is established.

The negative pore pressure that develops for a given potential depends on the k_{e} / k_{h} ratio (7). Since k_{h} decreases rapidly as the particle size, and pore size, decreases and since k_{e} is theoretically independent of pore size, the negative pore pressure that develops in a fine-grained material
would be greater in magnitude than that developed in a coarser material. Therefore, the relative amount of consolidation, which depends on the magnitude of the negative pore pressure, is potentially greater for fine-grained material.

When combining gradients to induce the flow of water through a porous medium, the total flow rate can be theoretically represented by superposition of the flow rates due to the individual gradients. It has been demonstrated experimentally (8) that combined gradients produce a iocal flow rate that can be represented by superposition as

$$
\begin{equation*}
Q_{\text {total }}=\left(k_{h} i_{h}+k_{e} i_{e}\right) A \tag{8}
\end{equation*}
$$

Therefore, as a compressible material consolidates, k_{h} will decrease as will k_{e}. Since k_{h} is a function of $e^{3} /(1+e)^{1}$ and k_{e} is directly proportional to porosity, n, which is equivalent to $e /(1+e), k_{h}$ will decrease more rapidly than k_{e}. The electrical potential gradient, i_{e}, will increase, assuming applied voltage is constant, as the distance decreases between the electrodes. The behavior of the hydraulic gradient in the consolidation process is complex since it is a function of two constantly changing variables; the rate of dissipation of the excess pore pressure and the rate of change in sample height. Nevertheless, it can be seen that as the material consolidates, the flow rate due to the hydraulic gradient will decrease with time whereas electroosmotic flow will increase. Thus, if the initial k_{h} value is great enough, hydraulic flow will account for a greater portion of the total flow rate initially and electro-osmotic flow will become more significant as the material consolidates.
${ }^{1_{\text {According }}}$ to Kozeny-Carmen equation where e is the void ratio (5,6).

EXPERIMENTAL APPARATUS AND TESTING PROCEDURE

Abstract

The experimental apparatus ${ }^{2}$ consisted of two Lexan cells having an inside cross－sectional area of $61.81 \mathrm{~cm}^{2}$ ．One of the cells served as reference for the other cell．This enabled the variability of the slurries from test to test to be factored out．

The bottom of the cell（cathode）was made of stainless steel $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 200 mesh screen and supported by a stainless steel，perforated plate．This plate was supported by another stainless steel plate that was attached to the frame and was tapered down towards the center to funnel the removed water out．This exit was valved to prevent water from escaping prematurely and allowed the pressure and electrical potentials to be applied before the test was started．Pressure was applied using an air cylinder to press a graphite－faced，stainless steel plate down onto the slurry．The plate was sealed with o－rings．A perforation in the pressure plate was fitted with a zerk to remove the air when inserting the plate into the cell．

A computer data acquisition system was interfaced to the testing ap－ paratus so that a number of different variables could be monitored fre－ quently and rapidly．The monitored and recorded variables include vol－ tage，current，slurry depth，the weight of water removed and elapsed time．

A slurry sample was collected randomly as the cell was filled．This sample was used to determine the initial solids content，zeta potential and particle size distributione Zeta potentials were determined on a Komline－ Sanderson Model ZR－12S Zeta Reader and particle size distributions were

[^1]determined on a Leeds \& Northrup Model 7991-0 Microtrac particle size analyzer.

After dewatering, the support plates were removed, the sample was extruded and the solids content was determined. The recorded raw data were then printed out as well as the computed incremental data including water removed, dewatering rate, current density, resistance, depth, accumulative electrical energy consumed and mechanical work done.

RESULTS AND DISCUSSION

Materials

Coal slurries of 40% solids by weight were prepared using Illinois \#6 coal from Peabody Coal Company, River King Mine, St. Clair County, Freeburg, Illinois. The lignite slurries ${ }^{3}$ were received from the University of North Dakota Energy Research Center where they were prepared in the hot-water-drying Process Development Unit (PDU) from Indian Head lignite. The red mud ${ }^{3}$ (bauxite preparation waste) and phosphate slime ${ }^{3}$ were received from the Tuscaloosa Research Center, Bureau of Mines, U. S. Department of Interior, University, Alabama. The kaolinite slurries ${ }^{3}$ (Lustra Slurries) were received from the Freeport Kaolin Company, Gordon, Georgia.

Zeta Potential Modification

When the zeta potentials were determined, it was found, in many cases, that the specific conductivity was greater than 2 mho/cm. Since the maximun allowable specific conductivity on the Zeta Reader is $2 \mathrm{mmho} / \mathrm{cm}$, all samples were prepared by combining 2 g of solids/liter of deionized water. This reduced the electrolyte concentration and thus, the specific conductivity which allowed a zeta potential to be determined. However, dilution expands the electric double layer, so the zeta potentails obtained were not the 'true' zeta potentials and were used as a relative measure of potential. In order to find a compound that effectively increased the magnitude of the negative zeta potential while minimizing the specific con-

[^2]ductivity and the cost, a coal slurry zeta potential - chemical additive study was conducted using various selected compounds. Increasing the zeta potential increases the dewatering rate and by minimizing the specific conductivity, more of the electrical energy is used to transport water.

Figure 1 shows the five most effective compounds found in the zeta potential modification study. The results are plotted as change in zeta potential to remove the variability of the coal samples versus total cost. Total cost is defined as the cost of the compound addition times the specific conductivity since an increase in specific conductivity can also be taken as a cost to the process. As can be seen in Figure 1, the test results showed that Calgon, sodium hexametaphosphate buffered with sodium carbonate, was the most effective in increasing the magnitude of the zeta potential with a low total cost. Ammonium oxalate, sodium carbonate, sodium hydroxide and sodium oxalate were also effective but at a slightly higher cost and/or smaller increase in the magnitude of the zeta potential.

Figure 1. The five most effective compounds in increasing the magnitude of the zeta potential at a low total cost

Pressurized Electroosmotic Dewatering

The PED test results showed, as expected, that the dewatering rate was initially high due to the hydraulic potential. The flow rate then tapered off and electroosmotic dewatering became dominant. This effect was only observed when the initial hydraulic conductivity was high and the suspension particles were not small enough to plug the pores of the filter. As shown in Figure 2, the use of electroosmosis in conjunction with pressure increases the initial dewatering rate over that of pressure dewatering.

In several PED tests, it was found that the resistance initially decreased then increased, as typically shown in Figure 3. The resistance cannot be lowered since water is continuously being removed. However, the resistance is computed from the measured voltage and current and this drop in resistance occurs congruently with a high dewatering rate. This can be seen by comparing Figures 2 and 3. The initial resistance drop is explainable by the existence of a streaming potential which would have a polarity opposite to that of the applied potential. Thus, the measured voltage is less than the actual applied voltage. The resistance then increases with water removal and when most of the water is removed, heat generation increases the resistance further.

Figure 4 shows the cake depth versus the water removed for a lignite slurry that was heated to $60^{\circ} \mathrm{C}$. The lignite slurry that was dewatered using PED had a higher initial solids content than did the slurry that was dewatered by pressure alone, 54.5% and 45.0% solids by weight, respectively. Thus, the maximum consolidation or minimum depth obtainable was different. The important observation that can be made is that after

Figure 2. Dewatering rate versus time for a 10% solids coal slurry comparing pressure and PED (voltage=50 VDC) at a pressure of $759 \mathrm{kN} / \mathrm{m}^{2}$

Figure 3. Computed resistance versus time for a 10% solids coal slurry using PED, voltage $=50 \mathrm{VDC}$ and pressure $=759 \mathrm{kN} / \mathrm{m}^{2}$
the slurry cake was completely consolidated, electroosmosis continued to remove water.

The lignite slurry was still fairly viscous at $60^{\circ} \mathrm{C}$, had a high initial solids content, possessed a high zeta potential, (-71 mV), and exhibited a particle size distribution that enabled good consolidation. These factors were near optimum and magnified the effectiveness of PED which can be seen in Figure 5 showing the water removed versus elapsed time. These are the same lignite slurries as previously mentioned as having a difference in initial solids content, so one must remember that the pressure dewatered slurry had more water available for removal. One can see that the dewatering rate is greater with PED than with pressure alone. Also, it shows that with time, pressure dewatering may eventually remove an equivalent amount of water as PED.

In this case, Figure 5 indicates that the equilibrium between the electroosmotic driving force and the induced hydraulic gradient is established quickly as noted by the abrupt change in the slope or dewatering rate of PED.

With the application of an electrical field, the dissociated ions are attracted to the electrodes. Since the water is free to drain at the cathode, cations are washed out with the water. Carbonation then takes place in the collected water giving it a milky or turbid appearance. These carbonates then precipitate out.

Given in Table 1 are some typical results of various slurries that have been tested. These slurries were tested as received and were not modified in any way prior to testing.

Figure 4. Cake depth for a 50% solids lignite slurry comparing pressure dewatering and PED (voltage=50 VDC) at a pressure of $759 \mathrm{kN} / \mathrm{m}^{2}$

LEGEND: Dwtr. Prc. © Pressure ■ PED
Figure 5. Water removed for a 50% solids lignite slurry comparing pressure dewatering and PED (voltage=50 VDC) at a pressure of $759 \mathrm{kN} / \mathrm{m}^{2}$

Table 1. Typical test results for various slurries tested as received

Slurry	Zeta Pot. (mV)	PED				Pressure	
		$\begin{gathered} \text { Init. } \\ (\% \text { SS }) \end{gathered}$	$\begin{aligned} & \text { Final } \\ & (\% \mathrm{SS}) \end{aligned}$	Time (min)	$\begin{aligned} & \text { Init. } \\ & (\% \mathrm{SS}) \end{aligned}$	$\begin{aligned} & \text { Final } \\ & (\% \text { SS }) \end{aligned}$	Time (min)
Kaolinite	-19.1	58.7	87.1	80	58.7	58.7	90
Red Mud	-10.3	25.7	64.9	17	33.8	63.9	30
Phosphate Slime	-22.2	2.6	63.4	21	2.8	6.3	30
Lignite	-71.0	54.5	73.1	28	45.0	62.3	60

CONCLUSIONS

Abstract

The research completed thus far has shown that the PED process is a very effective means of dewatering fine-grained material. Also, it has been proven to be applicable to all types of slurries, slimes and sludges. The results show that the final moisture content can be substantially reduced and/or obtained in a greatly reduced time. For example, final moisture contents of 15 to 20% by total weight have been accomplished in less than 10 minutes for 40% solids coal slurries having a top particle size of 40 micrometers.

The PED process can be economically improved by increasing the magnitude of the zeta potential such that the dewatering rate is increased and thereby, reduces the electrical energy consumption. Lower moisture contents are obtainable for material having a particle size distribution which augments packing density upon consolidation while pore saturation is maintained.

ACKNOWLEDGEMENT

The research on ultra-fine coal suspension dewatering is being
performed for the Ames Laboratory, operated under Contract Number
W-7405-Eng-82, and is supported by the Assistant Secretary of Fossil
Energy, Division of Coal Utilization, through the Pittsburgh Energy
Technology Center, Coal Preparation Branch.

LITERATURE CITED

1. Sprute, R. H. and D. J. Kelsh. "Laboratory Experiments in Electrokinetic Densification of Mill Tailings." Part II of II. U. S. Bureau of Mines RI7900, 1974.
2. Lockhart, N. C. "Sedimentation and electro-osmotic dewatering of coalwashery slimes." FUEL, 60 (10) (1981), 919.
3. Soderberg, R. L. and K. R. Dorman. "Sludge Dewatering by Belt Press." Mining Congress Journal, 64 (4) (1978), 29.
4. Manson, R. H. "Belt filter presses squeeze into prep plants," Coal Mining and Processing, 19 (1) (1982), 50.
5. Heath, Leon W. "Dewatering coal sludge by pressurized electroosmosis." M. S. thesis. Iowa State University, Ames, Iowa, 1982.
6. Winterkorn, H. F. and H. Y. Fang. "Soil Technology and Engineering Properties of Soils." Chapter 2 in Foundation Engineering Handbook. New York: Van Nostrand Reinhold, 1975.
7. Esrig, M. I. "Pore Pressures, Consolidation and Electrokinetics." ASCE, 94 (SM4) (1968), 899.
8. Gray, D. H. and J. K. Mitchell. "Fundamental Aspects of ElectroOsmosis in Soils." ASCE, 93 (SM6) (1967), 209.

PART II. AUGMENTING RESEARCH WITH A MICROCOMPUTER

ABSTRACT

A microcomputer automated data acquisition system was built to conduct testing for a study in pressurized electroosmotic dewatering (PED) of ultra-fine particulate suspensions. The PED research project required numerous variables to be recorded in a short time. In previous research, manual data recording greatly increased the elapsed time between observation cycles. By using a microcomputer to collect and record data, a substantial increase in data accumulation was realized. . The increase in the quantity of data and the reduction in cycle time not only enhanced the reliability of the PED data, but also provided evidence of a short-lived phenomena that would have otherwise gone unnoticed under manual data recording.

Additional software was developed to reduce the raw data, calculate incremental data, prepare data files to enable uploading to a mainframe computer for statistical analysis, plot the raw, incremental and computed data on an $x-y$ plotter and, of course, printout the raw data.

Data collection automation has allowed more tests to be run, a greater number of testing situations to be addressed and testing of more material types. This enhancement of research increases the ability to address field situations.

aUGMENTING RESEARCH wITH A MICROCOMPUTER

Leon W. Heath ${ }^{1}$

Ames Laboratory ${ }^{*}$
Iowa State University
Ames, Iowa 50011

*Operated for the U.S. Department of Energy by Iowa State University Contract No. W-7405-Eng-82

[^3]
INTRODUCTION

Since the advent of the microcomputer in the late 1970 s, numerous instrument interfaces and data acquisition systems have become available. However, these systems are sometimes expensive or specialized to an extent that any generic application is difficult. If one tries to build an interface, it can be quite complex because of the nonstandardized operating languages found especially in electronic instruments designed early in the microcomputer age.

In this project a PET/CBM ${ }^{1}$ Series $2001 / 32 \mathrm{~K}$ with a Basic 4.0 upgrade microcomputer was used to monitor pressurized electroosmotic dewatering (PED) research tests. The computer was interfaced with an Instruments Division, Measurements Group, Vishay/Ellis (V/E) 220 Strain Gage Instrumentation System to monitor pressure, displacement and weight of water removed using a pressure transducer, a linear variable differential transformer (LVDT) and a strain gage on a cantilever, respectively. The current and voltage were measured using an analog to digital (A / D) converter.

The collected data were sequentially stored on a CBM 8050 Dual Drive Floppy Disk and printed out at the conclusion of the test run on a CBM 8023P Tractor Printer. The raw and calculated data were plotted on a Hewlett-Packard 7220C Graphics Plotter.

[^4]
SCOPE OF STUDY

The objective of the research project was to investigate the influence of particle size distribution and zeta potential on PED of ultra-fine coal suspensions. Because of the variability of coal, it was necessary to run two tests simultaneously such that one test was a reference to the other to remove this variability when analyzing the results.

Originally, it was intended to monitor with respect to elapsed time the slurry temperature, pore water pressure at the top and bottom of the cake, the applied pressure, cake depth, voltage, current and the quantity of water removed. In addition, the electrochemical effects on the cake were to be quantitatively analyzed using X-ray diffraction (XRD). However, as with many research projects, limited funding prevented purchasing the devices required to collect data on the slurry temperature and pore water pressures as well as restricting the XRD usage.

Nonetheless, the number of variables that could be monitored for both cells were excessive if data acquisition was to be done manually and still preserve the integrity of the tests.

SYSTEM ORGANIZATION

Hardware

Figure 1 shows the computer and associated interfaced instrumentation and research equipment. To increase the speed of data collection and reduce the software requirements, the PET's IEEE 488 Bus (GPIB) port was used. This allowed the V/E system's interface to be daisy-chained, as shown in Figure 1, by assigning it a device number. This interface was assigned device number 5 since this number is normally used for modem communications and does not require software secondary addresses to define the information as an input or output. All of the devices, i.e. pressure transducers, LVDTs and strain gages that were monitored by the V / E, were wired in full-bridge circuitry.

Software

Since the V/E system's output was in binary coded decimel (BCD) language, the software was written to convert the eight-bit input. Simultaneously, the converted input was entered into the associated channel and device calibration curve to define a real number before the data was stored. Data could have been collected at a much faster rate except that before inputting data after a channel advance on the V / E, a time delay of one to two seconds was required because of the systems archaic slowness, i.e. in respect to today's computer systems. Thus, the elapsed time at which each observation was made, rather than for one complete cycle, was collected and recorded using the PET's internal clock.

Figure 1. Computer, interface and research equipment organization.

Prior to each test run, variables such as voltage, pressure, test identification filenames, date, and zero depth reference were preset. In the same program, the V / E was initialized and the total elapsed time for the test was entered.

All of the preset data were stored in a sequential file. The memory was then cleared and upon chain-loading the data acquisition software, the preset data were read back into the memory. This minimized the memory usage of nonessential variables and thereby minimized the run time of the data acquisition softwares The run time could have been further reduced had there been a compiler available. Nonetheless, a complete observation cycle in which, for both cells, 10 variables and the elapsed time for each were collected and recorded in 15 to 20 seconds.

Although both cells were normally used for a test run, software was also developed such that a test could be conducted in either cell independently. Additional software was developed to reduce the raw data, calculate incremental data, prepare data files to enable uploading to a mainframe computer for statistical analysis, plot the raw, incremental and computed data on an $x-y$ plotter and, of course, printout the raw data. Other software was developed to reduce the zeta potential modification test data and prepare the reduced data for uploading. Existing communication programs were modified so that the PET and mainframe could communicate at a baudrate of 1200 bps . A program was written on the mainframe to massage the SAS/GRAPH ${ }^{T M}$ files prior to downiloading so the files could be stored on the disk drive and erased from the mainframe's storage bank. Programs were also written to continuously download a number of SAS/GRAPH files and erase them from the mainframe's storage bank and to continuously download all of
the other files in the mainframe's storage banks for backup.
All of the developed software is presented in Appendix A. Pigures 2 through 5 present examples of the printouts of the software.


```
    PE=C
```

Test Code : RBRV5321 Date Tested : 16-FEE-85									
Cum. H2O (g)	$\underset{(\min)}{E T}$	Depth (cm.)	$\underset{\langle\mathrm{min}\rangle}{\mathrm{ET}}$	Currerst (mA)	$\begin{gathered} E T \\ \langle\min \rangle \end{gathered}$	Voltage (v)	$\begin{aligned} & \text { ET } \\ & \langle\text { min }\rangle \end{aligned}$	Press. (psi)	$\begin{gathered} E T \\ (\min) \\ \hline \end{gathered}$
. 0	. 09	3.32	. 05	2012	.88	49.7	. 08	188.8	. 13
37.3	. 40	2. 65	. 43	2012	. 47	50.3	. 47	188.3	53
70.1	. 72	2.10	. 75	2012	. 78	49.3	. 78	108.4	. 85
95.9	1.00	1.70	1.03	2012	1.87	49.3	1.97	108.E	1.13
108.4	1.28	1.60	1.32	2012	1.33	59.1	1.35	108.8	1.42
113.3	1.57	1.58	1.50	1768	1.62	50.5	1.63	188.8	1.68
115.4	1.83	1.58	1.87	1537	1.98	50.5	1.90	108.8	1.97
117.6	2.12	1.58	2.15	1327	2.17	50.5	2. 18	188.8	2.23
120.0	2.38	1.57	2.42	1186	2.43	56.5	2.45	188.7	2.50
121.7	2.65	1.57	2.68	1061	2.72	50.5	2.72	108.7	2.77
123.8	2.93	1.57	2.97	966	2.88	50.5	2.98	188.7	3.05
123.E	3.20	1.57	3.23	864	3.27	59.5	3.27	188. ϵ	3.32
126.9	3.47	1.57	3.52	792	3.53	50.5	3.53	188.6	3.63
126.7	3.78	1.57	3.82	721	3.85	50.5	3. 85	198.5	3.92
127.9	4.07	1.57	4.10	697	4.13	50.5	4.13	108.5	4.18
128.6	4.35	1.57	4.38	657	4.42	50.5	4.42	108.4	4.48
128.7	4.62	1.57	4.67	610	4.68	50.5	4.68	108.4	4.75
128.5	4.98	1.57	4.93	602	4.97	58.5	4.97	188.3	5.62
129.5	5.17	1.57	5.20	562	5.23	59.5	5.23	128.3	5.28
129.4	5.43	1.57	5.47	538	5.59	50.5	5.50	108.2	5.55
129.5	5.72	1.57	5.75	538	5.77	50.5	5.77	188.2	5.85
130.0	5.98	1.57	6.03	522	6.05	50.5	6.05	188.2	6.12
130.7	6.27	1.57	6.30	498	6.33	50.5	6.33	188.1	6.38
139.3	6.53	1.57	6.58	490	6.60	50.5	6.68	188.1	6.67
130.3	6.82	1.57	6.57	458	6.88	50.5	6.88	188.1	6.95
13 E .8	7.08	1.57	7.13	453	7.15	50.5	7.15	108.0	7.23
131.1	7.38	1.57	7.42	434	7.43	50.5	7.45	188.8	7.52
131.1	7.67	1.57	7.70	434	7.72	50.5	7.73	108.0	7.78
131.3	7.93	1.55	7.97	434	8.00	50.5	8.80	108.8	8.16
131.8	8.25	1.57	8.28	410	8.32	50.5	8.32	188.0	8.37
131.5	8.52	1.57	8.57	402	8.58	50.5	8.58	188.0	8.65
131.9	8.78	1.57	8.83	394	8.85	50.5	8.85	1 198. 0	8.93
132.1	9.68	1.57	9.12	394	9.15	50.5	9.15	107.9	9.22
132.4	9.37	1.57	9.49	377	9.42	50.5	9.43	107.9	9.48
132.4	9.63	1.57	9.67	369	9.70	50.5	9.70	187.9	9.75
132.6	9.92	1.57	9.95	386	9.98	50.5	18.00	107.9	10.05
132.3	10.20	1.57	10.25	377	10.27	50.5	10.27	107.9	10.53
132.7	10.48	1.57	10.55	353	10.58	50.5	18.58	187.9	10.65
132.7	10.88	1.56	10.83	345	10.85	50.5	10.85	187.9	10.92
133.2	11.88	1.56	11.12	369	11.13	50.5	11.15	107.9	11.20

Figure 2. Example of the PED test raw data printout

Figure 3. Example of the PED test calculated data printout.

ELEにTFロロSTMロTエロ

FED

Test Code ：FXivasela
Date Tested ：21－MRY－85

Initial voltage	30.1 V
Initial pressure	108.8 ksi
Elapsed Time	15 min
Empty depth	5.88 cm
Initial water added	$.00 \quad \mathrm{~g}$
U／E balance adjustment：	

Channel $0=-290.00$

Channe1 $1=+2.33$

Channe 14＝－236．33

Test conducted in cell no． 1

Figure 4．Example of the PED test initialization variables printout．

Zeta Potentis. 2 Inuesstigation

Test Code - CPLigi			
Final Concentration (H)	Zeta Potential (mV)	Specific Conduretivity (manos/cm)	Temperature (C)
0.800000808	-25.5	112	27.2
0.000085632	-28.3	122	27.8
0.000011264	-28.4	129	28.1
0.800022525	-31.0	142	28.7
0. 090845039	-32.9	167	29.6
0.000090028	-35.5	216	30.3
0.000168641	-45.1	385	30.9
0.080224780	-50.2	377	31.4
0.090280683	-52.5	452	32.8
0.800336588	-53.5	528	32.4
0.000392417	-54.2	607	33.2
0. 890448169	-53.1	682	33.6
0.000503845	-53.8	765	34.5
0.000559444	-51.0	835	34.6
0.800614968	-51.9	989	34.8
0.600725787	-51.e	1859	35.8
0.800836394	-50.5	1199	35.9
0.800946528	-49.4	1329	36.1
0.801111282	-49.5	1524	36.4
0.801384397	-48.5	1818	36.7

Figure 5. Example of the zeta potential modification test calculated data printout.

DISCUSSION

The biggest advantage to computerized automated data acquisition is that the investigator is freed to more closely observe the test as it progresses. This allows one to draw conclusions from the results that may otherwise be unsubstantiated and require another test to be run.

Also, because of the number of observations taken in a short time, evidence of short-lived phenomena can be obtained. These occurrences may go completely unnoticed if manual data recording is used. A prime example of this was found in this project where the existence of a streaming potential was assumed not to occur when data were collected manually. With the present computerized data acquisition system, evidence that a streaming potential could have occurred was obtained. However, to fully substantiate this occurrence, non-polarizable electrodes must be used. Nonetheless, it is now realized that a streaming potential may exist.

Another advantage to computerization is that once the raw data have been collected and recorded, the computer can then be used to reduce the data and remove the tedium of doing so manually. Also, the data may be analyzed in many more approaches. This enables more tests to be run because of the shortened time in reducing the raw data. Because more tests can be run, the basic testing of a research project can be completed more quickly and allow specific testing, e.g., into various field situations. In this project, numerous types of slurried materials other than coal suspensions were tested using PED for various industries concerned with the dewatering of fine-grained materials.

One major disadvantage to any computer software that cannot be
overlooked is the phenomena of 'GIGO' - garbage in, garbage out. Thus, one must thoroughly understand the computer system and the operation of each device the computer communicates with. If one does not completely understand the system or even if one does, for the sake of checking, a full array of tests covering the occurrence of any possible event must be performed with knowledge ot the outcome beforehand. The required extent of one's computer knowledge, obviously, depends on the involvement in software development or as in many cases, the amount of financial support available to contract software development.

CONCLUSION

Using a microcomputer for research data acquisition enhanced not only
the volume of data collected but also the quality and the field
applicability, Short-lived occurrences were detected and a better
understanding of the testing was gained.
With time, it can be forseen that microcomputers will become a common
part of experimental programs, especially as computer systems become more
standardized, versatile and inexpensive.

Abstract

ACKNOWLEDGEMENT

The research on ultra-fine coal suspension dewatering has been performed for the Ames Laboratory, operated under Contract Number W-7405-Eng-82, and is supported by the Assistant Secretary of Fossil Energy, Division of Coal Utilization, through the Pittsburgh Energy Technology Center, Coal Preparation Branch.

Abstract

Increasing quantities of fine coal are being generated with the introduction of new deep cleaning methods. In response, improved fine coal recovery processes are being developed. Current dewatering techniques for fine coal suspensions are either expensive or not as effective as required.

Many solid/liquid separation processes have been studied and some investigators have shown that electroosmotic dewatering of fine-grained material is promising. However, combining electroosmosis with pressure increases the dewatering rate and substantially reduces the final moisture content.

The electroosmotic flow rate is theoretically independent of the pore size and electroosmosis does not affect the intergranular pressure (effective stress). Also, the efficiency of electroosmosis decreases rapidly if the pores do not remain saturated. Thus, when electroosmosis is used for dewatering, consolidation must occur simultaneously with water removal to maintain pore saturation. If consolidation does not occur, an equilibrium state will be reached in which the flow of water ceases. Therefore, in the pressurized electroosmotic dewatering (PED) process, electroosmosis is utilized as the driving force on the pore water and the applied pressure is used to consolidate the material by increasing the intergranular pressure.

Automated laboratory bench tests have been conducted to optimize the PED process by controlling the parameters which affect the dewatering rate and the particulate consolidation of coal suspensions. The variables include zeta potential, voltage, particle size distribution and pressure.

FINE COAL DEWATERING BY PRESSURIZED ELECTROOSMOSIS

Leon W. Heath ${ }^{1}$ and Turgut Demirel ${ }^{2}$

Ames Laboratory ${ }^{*}$
Iowa State University
Ames, Iowa 50011

*0perated for the U.S. Department of Energy by Iowa State University
Contract No. W-7405-Eng-82

[^5]
INTRODUCTION

New coal cleaning processes are making use of pulverization to improve mineral liberation and often, the resulting clean coal is in an aqueous state. State-of-the-art dewatering techniques are inadequate for these fine coal suspensions. The reason being that the movement of water within the particulate matrix is governed by the hydraulic conductivity which, for fine-grained material, is relatively low. Thus, subsequent expensive thermal drying is necessary. An approach by others (1,2) is to use extremely high consolidating pressures, 10,000 to $30,000 \mathrm{psi}$, which is also expensive in equipment maintenance and somewhat impractical.

Electroosmosis, the electrokinetic movement of water through a porous medium by an electrical field, is theoretically independent of pore size. However, electroosmosis has no influence on the intergranular or effective stress. Very little consolidation takes place when dewatering is done solely by electroosmosis. If the material does not consolidate equivalently with water removal, the pores become unsaturated. Once this occurs, the electroosmotic flow of water is terminated because electrical conductivity is governed by the pore saturation.

Pore saturation can be maintained by applying a pressure to the slurry. Initially, the applied pressure increases the pore water pressure and causes water to flow out of the particulate matrix. As this excess pore pressure dissipates, the load is transferred to the particles and thereby, increases the effective stress and consolidation is initiated.

By combining pressure and electroosmosis into a pressurized electro-
osmotic dewatering (PED) process, a more effective solid/liquid separation method is realized because of the dewatering enhancement.

THEORETICAL ASPECTS OF PED

A discussion of the theory has been presented in another publication (3) and thus, the reader is referred to it for a background in the combination of the hydraulic and electroosmotic water transport mechanisms. The particle size distribution (size consist ${ }^{1}$) influence and the grounds for the synergistic aspects will be presented herein.

The principle of superposition is directly applicable to hydraulic and electroosmotic flow rate provided the material undergoes no consolidation. However, superposition cannot be applied for the PED flow rate of water. This is because of the nonlinearity presented by the consolidation and water removal for which depth is continually changing. This changes the hydraulic and voltage gradients as well as the hydraulic conductivity and porosity. Therefore, in this study an experimental approach has been used to assess the results of the PED process.

Particle size distribution controls the degree of consolidation obtainable and thus, controls pore saturation for a given quantity of water. Since pore saturation affects the electroosmotic efficiency, a particle size distribution which enhances packing density is beneficial to the PED process. The Talbot formula expresses the particle size distribution which produces a maximum density as

$$
\begin{equation*}
p=100(d / D)^{x} \tag{9}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
\mathrm{p} & =\text { weight percent finer than } D \\
\mathrm{~d} & =\text { particle size }
\end{aligned}
$$

${ }^{1}$ Terminology used in other disciplines for particle size distribution.

$$
\begin{aligned}
\mathrm{D}= & \text { maximum particle (top) size } \\
\mathrm{x}= & \text { exponent value depends on particle } \\
& \text { shape, } 0.25 \leq x \geq 0.40
\end{aligned}
$$

Dewatering is enhanced in the PED process because of the consolidation provided by the applied pressure and fluid flow by pore size independent electroosmosis. The theoretical electroosmotic flow rate expression does indicate, however, a dependence on porosity. Hence, the consolidation does decrease the electroosmotic flow rate. The excess pore pressure is dissipated by water flowing from the particulate matrix and eletroosmosis augments the flow rate. Also, the hydraulic potential rapidiy removes the water from the larger pores. The maintenance of the pore saturation increases the time that electroosmosis is effective. Therefore, the reduced electroosmotic flow rate due to the decreasing porosity is offset by the enhanced pore pressure dissipation and the prolonged duration of the electroosmotic effect.

RESULTS AND DISCUSSION

The following treatise describes the results of using three samples with different particle size distributions，as shown in Figure l．Also shown in Figure 1 are the Talbot maximum density distribution ranges for top sizes of 425 and 176 micrometers．The sample identified as＇PSD R＇ represents the fraction of coal passing a $\# 40$ mesh sieve received from the Ames Coal Preparation Test Facility．The lump coal was size reduced at the
 ＇PSD 1 ＇was prepared by further grinding the coal received from the test facility（ $-\| 8$ mesh）using a Tekmar－Fritsch Pulversette 14 Rotor Speed Mill with a 0.08 mm screen．The sample identified as＇PSD RI＇was a $50 / 50$ mix of＇PSD 1＇and that fraction passing a $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~(80 ~ m e s h ~ s i e v e ~ o f ~ t h e ~ c o a l ~ p r e p a r e d ~$ at the plant．

The PED test results showed，as expected，that the dewatering rate was initially high due to the hydraulic potential．The flow rate then tapered off and electroosmotic dewatering became dominant，as shown in Figure 2. The water removed has been normalized by reporting the water removed as a percent of the initial water available to remove the effect of inconsistent initial slurry volumes．Figure 2 also shows that the dewatering rate due to electroosmosis is higher，as theory predicted，with a higher applied voltage．

Theory also predicts that a higher zeta potential should also increase the dewatering rate．To verify this prediction，coal slurry samples were treated with solutions of potential－determining ions to increase the zeta potential（3）．The effect of increasing the zeta potential by using a pH

Figure 1. Particle size distributions of the three slurries

Figure 2. Water removed versus time for slurry PSD I

10 buffer (potassium carbonate - potassium borate - potassium hydroxide) can be seen in the portion of the curves prior to the point of inflection in Figure 2. However, after a major portion of the water had been removed, the dewatering rate became equivalent to that of the unbuffered slurry. This may be due to the reduction in the buffer activity because of the reduced volume present and the inherent electrochemical reactions. However, it does show that the increase in zeta potential by the buffer did increase the potential to remove water.

Figure 3 shows that by increasing the zeta potential by buffering the slurry, more water was removed with an equivalent amount of electrical energy. It also shows that about the same amount of water was removed from the buffered slurry using a lower voltage than that used on the unbuffered slurry. Thus, by increasing the zeta potential, less electrical energy was used to remove the same amount of water.

Figure 4 shows the water removed versus time by using the same pressure and voltage for the three samples having different particle size distributions. One can see that the dewatering rate, or actually, the hydraulic conductivity, k_{h}, is greater for the as received, PSD R, coal. For the other two slurry particle size distributions, the initial dewatering rate is less but the dewatering rate due to electroosmosis is greater.

The reason that the electroosmotic portion of the dewatering rate is less for $P S D R$ than the others, even though it had a particle size distribution more closely in the Talbot maximum density range, is that the larger particles settled out quickly. Thus, the particle size distribution was not homogeneous with depth. In addition, in each test that electroosmosis

Figure 3. Water removed versus electrical work for slurry PSD 1

Figure 4. Water removed versus time for each of the slurries
with different particle size distributions
was used, some of the small particles could have been attracted to the anode by electrophoresis which added to the nonhomogenity of the particle size distribution with depth. Because of this nonhomogenity, the degree of pore saturation may not have been uniform with depth. Electroosmosis was then less effective in removing water because pore saturation controls the electrical conductiviy. Also, because the degree of pore saturation was less, the resistance increased more rapidly with water removal for the PSD R coal slurry as can be seen in Figure 5.

The tests were run using a constant voltage, so as the resistance increased the current decreased. Power or electrical work is equal to voltage times current, $P=V I$, so in Figure 6 it appears that the electroosmotic removal of water was more efficient because of the reduced power consumption. In reality, the efficiency in water removal was due to the higher hydraulic conductivity allowing pressure dewatering to be more effective.

The slope of a line tangent to a point is then the water removed per unit of consumed electrical energy. Thereby, Figure 5 shows that a good particle size distribution in which pore saturation is maintained, the electroosmotic removal of water is more efficient and more water can be removed because of the extended time that the pores are saturated. Thereby, making electroosmosis effective for a longer time.

In each test that electroosmosis was used, the water removed was turbid or milky in appearance. X-ray diffraction of the suspended and dissolved material showed that it was sodium sulfate and calcium carbonate. Whereas, the water removed by pressure was clear and on evaporation X-ray diffraction showed that the dissolved compound was calcium sulfate. This

Figure 5. Resistance versus time for each of the slurries with different particle size distributions

Figure 6. Water remove versus electrical work for each of the slurries with different particle size distributions
observation then also makes the application of a theoretical expression for electroosmotic flow rate questionable beca use of the usual theoretical assumption that no electrochemical reactions occur.

CONCLUSIONS

The results have shown that there are basically two characteristics of the coal slurries that can be economically and easily modified to improve the PED process. One is the particle size distribution which is very important in obtaining good consolidation so that pore saturation is maintained. Thereby, allowing the electroosmotic component of PED to be more effective such that more water is removed. Secondly, it has been found that modifying the zeta potential is also effective in increasing the initial dewatering rate and also increases the amount of water removed. Both of these observations are explainable by reasoning that the 'no flow' equilibrium between the electroosmotic driving force and the induced hydraulic gradient is not established as soon. The reduction in dewatering time reduces the consumed electrical energy. Thus, the degree of consolidation controls the achievable reduction in moisture content and the zeta potential controls the dewatering rate.

It has been found that in each test that the combination of electroosmosis with pressure increased the dewatering rate as compared to dewatering by pressure alone.

ACKNOWLEDGEMENT

The research on ultra-fine coal suspension dewatering has been performed for the Ames Laboratory, operated under Contract Number W-7405-Eng-82, and is supported by the Assistant Secretary of Fossil Energy, Division of Coal Utilization, through the Pittsburgh Energy Technology Center, Coal Preparation Branch.

LITERATURE CITED

1. Personal communication on September 28, 1983 with Stanley M. Coulter, Manager, Product Development, Dravo-Wellman, Pittsburgh, PA 15225.
2. Majcher, M. M. "High Pressure Fine Dewatering and Agglomeration." Unpublished. Dravo-Wellman, Pittsburgh, PA 15225, 1983.
3. Heath, L. W. and T. Demirel. "Pressurized Electroosmotic Dewatering (PED)." Proc. Engng. Found. Conf. "Flocculation, Sedimentation and Consolidation." Sea Island, Georgia, 1985.

GENERAL SUMMARY AND RECOMMENDATIONS

The investigation has shown that the pressurized electroosmotic dewatering (PED) process is an effective method for solid/liquid separation of ultra-fine, i.e. smaller than 200 micrometers, coal suspensions. The PED process is also effective for many other slurries, sludges and slimes. Conceivably, the only suspension that PED could not be applied to is one that would be detrimently effected by the incurring electrochemical reactions. Also, the $P E D$ process would not be cost effective if the slurried material had previously undergone some type of flocculation or coagulation since, in general, the zeta potential is then reduced to the 0 to +/- 10 millivolt range.

In the PED process, electroosmosis provides the driving force on water in the relatively small pores and the pressure incuces consolidation by increasing the effective stress. Pore saturation can be maintained for a longer period if the particulate material has a particle size distribution conducive to a maximum packing density. An increase in the magnitude of the zeta potential using chamical additives can cost effectively increase the flow rate.

It was found that a zeta potential modification not only increased the flow rate but also decreased the final moisture content. This is reasoned to be because of the increased electroosmotic potential delaying the establishment of the equilibrium between it and the opposing induced hydraulic gradient.

The effectiveness of the PED process is related to the depth of the slurry cake, in that the depth controls the hydraulic and voltage
gradients. It is well known that the flow rate of water is greater for higher gradients in both cases. However, the amount of water remaining when the equilibrium is established is less when the gradients are higher. Greater depths could be used but the magnitude of the applied pressure and voltage required to obtained the same gradients may be limited by equipment restrictions.

For highly viscous materials such as the lignite slurry, the PED effectiveness is greater because the lesser dependence on viscosity.

Further study addressing the current density relationship of the PED process may be another step in improving the process. This would maximize the efficiency of the applied voltage and thereby, dewatering a greater volume for a given depth. Other investigators have shown that periodic current reversal can be used to offset the opposing induced hydraulic gradient caused by electroosmosis and any occurrence of desiccation. It follows that the elapsed time at which current reversal is initiated and the frequency of current reversal is dependent on the magnitude of the negative pore pressure that develops.

Further research and development of the PED process in either a batch or continuous process should entail a study into the shape of pressure application mechanism. It is known that a domed piston will provide a more uniform pressure gradient than a flat plate. The degree of curvature on the dome is dependent on the geometrics of the system.

The results of this study can be used to outline the development of PED into a continuous process. It is anticipated that the belt filter press is the dewatering device on the market today that will be the most effective and easily modified to make PED a continuous process.

Currently, a device marketed by Dorr-Oliver, Inc. (1,2), electrically augmented vacuum filtration (EAVF), and another under development at Battelle Columbus Laboratories (3), electroacoustic filtration, incorporate electroosmosis in a continuous manner. The dewatering enhancement in each process is not as substantial as in the PED process because of the separation mechanics involved. In the EAVF process, no effective stress is gained. Hence, consolidation does not take place, the pores become unsaturated and the electroosmotic driving force equilibrates with the induced hydraulic gradient too rapidly to be effective. Battelle's process provides some consolidation, but not a substantial amount. Also, there is an additional cost in generating the acoustics.

Dr. N. C. Lockhart, Comonwealth Scientific and Industrial Research Organization, Austrailia has done a substantial amount of field work using electroosmosis with a belt filter press and has reported some success (4). However, his success has been limited because he has overlooked the influence of the slurry's zeta potential, in that the developed process includes flocculation prior to subjecting the material to the process.

REFERENCES

1. Freeman, M. P. "Vacuum Electrofiltration." Chem. Eng. Prog., 78 (8) (1982), 74.
2. Personal communication on April 24, 1985 with J. B. Culkin, Dorr-Oliver, Inc., Stamford, CT 06904.
3. Muralidhara, H. S. and N. Senapati. "A Novel Method of Dewatering Fine Particle Slurries." 15th Intl. Fine Particle Soc. Conf., Orlando, FL, 1984.
4. Lockhart, N. C. "Sedimentation and electro-osmotic dewatering of coalwashery slimes." FUEL 60 (10) (1981), 919.

ACKNOWLEDGERENTS

I wish to express my sincere gratitude and love to my wife, Lahna, for her never-ending love and support.

My deep appreciation also goes to Dr. Turgut Demirel for his help and guidance.

I also thank Ray W. Fisher for his continued support and enthusiasm.
The cooperation of my Program of Study committee members, Drs. Robert A. Lohnes, F. Wayne Klaiber, Chester S. Comstock, Jr. and John M. Pitt, is greatly appreciated.

I also appreciate the help from Kenneth L. and Dixie L. Bergeson in editing and preparing many of the papers.

APPENDIX A. COMPUTER SOFTWARE DEVELOPED TO CONDOCT RESEARCH

The software developed to acquire data from the research tests and reduce the collected data is presented herein. Also included are those programs modified to improve communications between the microcomputer and mainframe and to enable graphic file downloading and re-addressability.

MENU-SETUP is the setup and initialization program that also allows one to chain load the other PED test programs directly.

PED1 is the data acquisition program for conducting a test in Cell 1 only.

PED2 is the data acquisition program for conducting a test in Cell 2 only.

PED3 is the data acquisition program for conducting tests in Cell 1 and Cell 2 simultaneously.

PRINTOUT is the program that prints out the raw data, calculated data and the initialization test variables.

ZETA is the program that reduces the zeta potential modification test data, stores the raw data and prepares an upload file.

UPLOAD PREP is the program for preparing the PED test data files for uploading to the mainframe.

MENU/SAS is the modified program to enable downloading of the graphic files from the mainframe and to chain load the other mainframe communications programs.

MODWYL is the program modified only to increase the communication speed to 1200 bps .

NITEDWN is the modified program to enable continuous downloading of
graphic job files run and held in the mainframe's storage bank.
DUMPFILE is the modified program that downloads continuously all files in the mainframe's storage bank.

PLOTSAS is the program written to read graphic files downloaded and stored on the dual disk drive and the output the information to the plotter.

WRITEFET is the program that creates the sequential file holding the information needed to run the NITEDWN program.

PSDPLOT is the program written to create a particle size distribution plot on the plotter.

MENU－SETUP

```
1 goto78
2 print"Esuc%uscres
3 print"gRunming - channe l"c
4 print#1,chr$(11):g0sub9:imput$1, as :printw1,chr$(7):ifa$=w"then2
5 gosudo10:ch=15-<B%25+4ma6+2%a7+a8>: ifch<ctheng=c-ch:gosubo:goto4
6 ifcCChtheng=12-ch+C :goswb8:goto4
goto13
8 fori=1tog:printwi, Chr$(13)chr$(7):fork=1to120:nextk,i ireturn
9 forw=etog9:nextiroturn
```



```
a7mint(a/2):a=a-a>輷:a8mint(a/1):ama-a8手1 sreturn
fz=8:z=8: ar=>0: fori=1to3:fx=0
print*1, chr*(9):gosub9 : imput#1, as
ifa\delta=""andz<5thenz=z+1 spmint*1,chr$(7) sgoto14
ifas=""andre>Sthenm1=8:fx\equiv1;goto18
```



```
18 print#1,chr$(10):90sub9: input#1, 25
19 ifasz"",andz<5thenz=z+1 890to18
20 i fas="" andz=35thenrdm0: fxwi :90to22
```



```
24 iffx<>1 thenarmar+rdz fz"efz+1
25 next:iffz=0then13
26 romar/fzireturn
ifs=1 thenrd=rd+i9:p1mrdinrdm-4.8536891em9+rdw.80786563+.07813882
```



```
ifs=2thenp2=(int((p)Z|xr)自10+.5))/110:pmp2
```



```
ifs=1 thenul =\< int((u*.21348935+.03912292)車10+.5))/10:umu1
```



```
imput"gthich disk drive : or 1 % ";dl:fu=1
i fol l=0 thendopen##,(i$), dG,w=s0+049
ifd l=8 thendopen#2,(i$),d(,w: : %0to49
ifcdl=1
goto41
imput"gthich disk drive El 0 or 1 #"ydr:fu=2
ifcr=8thendopen\3,(r$),d隹,w:goto49
ifdr=1 thendopen*3,(r$),di,w&goto49
goto44
ifds=63themprint"80t" ds5 : dc lose :q0to52
ifds<>日thenprint" "40" ds$:.dc lose sq0to59
1 return
input"gWould you like a directory ";q$:ifleft$(a$,1)=">"then55
if left$\q$,l>="n"themprint"\a":goto59
goto52
print"gt Remember spacebar stops listing"
input"FWhich disk drive ";q:ifqmethendirectorydGigoto59
57 i fousi thendirectorydl :gotos9
```



```
118 gotol22
19 ifp1 $="n" thenc=4:s=1 :qotol27
120 ifp1$= "y"thenpl we : gotol22
121 gotol17
```



```
1 2 3 ~ g o t o 1 3 1
124 ifp2s="n" thenc=5 :5m2:goto127
125 ifp2s="Y"thenp2=0:goto133
126 goto122
127 gosub2=gosub27
128 ifas=chrs(13)then127
129 ifa$=chr$(32)thend=d+1 :goto131
130 g0sub68:goto128
131 i fal>1 orf(3then133
131 ifaslor
32 gotol22
133 d#0:gosub75:printtab(7) "Power Supp ly Voltage Setup":print
134 iff<S2theninput"gIs the PSWI woltage zero ";vi$$goto136
135 30to139
136 ifu1s="n"thens=1 sad$meMrs(< 124) :goto144
137 ifulsm"y"thenul=0::d=d+1:goto139
138 gotol34
```



```
140 gotol51
141 i fu2$="n"thens=2:*-4$=chr$(108) zgoto144
142 ifuZ%=">"thenu2=0:d求d+1 igoto151
143 gotol39
```



```
145 v=0:fori=1to3
```



```
147 zeasc(as):v=u+2:next:v=u/3:gosub32
148 ifas=chrs(13)then144
149 ifas=chr$(32)thendmod+1:goto151
158 gosub68:goto148
151 i fa>1 orf<3then153
152 gotol39
153 gosub75:print"g&8s88 P lease Wait ... I'm storing data"
154 copen"4, "Ldump", d0,w : iff<>2thengosub62
155 i ff f\1thengosub65
156 de loset4:g=4:%0sub8:c lose1
157 gosub75:printtab(12) "Setup Comp leted"
```



```
159 iffm I thendc losew2:c lr sdload"ped1" #run
160 i ffm2thende lose*3:c Ir sd load"ped2" arun
161 de lose#2 ade lose*3:c Ir sd load"ped3" srun
170 fillerfillerfillerfillerf: llerfillerfillerfillerfillerfiller
180 fillerfillerfillerfillerfil lerfillerfi llerfillerfillerfiller
190 fillerfi llerfillerfi llerfillerfillerfillerfi llerfillerfiller
200 fi llerfi llerfi llerfillerfi llerfillerfillerfillerfillerfillerfiller
210 fillerfillerfillerfi l lerfi llerfi llerfi llerfillerfi llerfi
220 fillerfillerfillerfillerfi llerfi llerfi llerfillerfillerfiller
238 fi llerfi llerfillerfillerfillerfillerfi Ilerfillerfillerfiller
```

[^6]58 input\#4, $c, c h, u 1 \$, p 15, a \$, a, a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8, e 1, w 1, \times 1, d \$: d e$ tosen4
 60 ifdl=0thendopenin, (1 s $\$$), dQ, sappendi"5, "tests", de
61 ifdi=1 thendopenill $2,(2 s \$), d 1$, ws appendin5, "tests", di

66 geta 1 i fass ${ }^{* \prime \prime}$ "them 66
67 ifat= " $\mathrm{S}^{\prime \prime}$ "then69
68 goto66
69 printtab(10)"n
*: goto46
70 de losen2:c losel $1 \mathrm{pminttab}(7)$ "ne The test is completed 9

PED2

[^7][^8][^9]

```
58 12=(int((i4-1)事180+.5))/100:z$(12)=5tr$(12):roturn
```



```
61 t9m(int((tr-i2)曹100+.5))/108:rd=rd+i0:p2mrditrd青-1.3368269e-9
```



```
64 gosub47:ifad<)1 thenal=0-51:s1ms1+al:2咅(2)mstr-s(si)
65 G=1:85sub3:q0sub59: ifu1$=#"n""thergosub32
66 c=2:g0sub3:ifi2=8theni2=tr
67 gosub53:i fadC\1thenar=0-s2:s2=s2+an:z$(8)=str$(s2):3d=1
68 c=3:gosub3 :gosub56 : ifu2s="n"thengosub38
69 iffo1直""n"thenc=4 : gosub3 :q0sub59
70 ifp2s="n"thenc=5 :q0sub3 :gosub61
```



```
72 qosub9 :printtab(21-len<z$(2)>)sitab(34-len<z$(8)) )s2" (7")
73 gosub9 sprinttab(21-len(z$(3))) p1tad(34-len(z5(9)))p2"gin
74 g0sub9:printtab(21-lme(z5(4)) )ultab(34-lem(z$(10)))u2"8"
75 gosub9 :printtab(21-\operatorname{len}(z$(5))>e1tab(34-\operatorname{len}(z$(11)))e2"g"
```



```
77 ifte<elont5<e2then63
```



```
79 dopen#4, "clump", d0 sinput#4, 15,d1,i1,i3,i5,i6,i9, mi,v1,p1, l1,t8,t1,t2,t3,t4,c
```



```
81 imput 4,i8,i0,52, 42,p2,12,t5,t6,t7,t8,t9,c,ch, v25,p25, as, 2, al, -22, 23, 24, 25
```



```
84 ifdlm1 thendopen\:2, (lss), d1, v: append贯5, "tests", dl
85 ifformethendopen(3)(rs%),d0,*
86 ifdim:1 thendopenil3,(rs*),d1,w
87 Open1,5:c$mehrs<13\rangle:forim1to12:zs(i)=" Q":next
88 print"发":fori=1to40:print"# "; mmext
89 print"? Pressurized Electroosmotic Dewatering *
```



```
91 print"_Cell 1 Cell 2 Con
92 print"Elmpsed Time ="spc(8)"min"spe(10)*min"
93 print"g% Rccum. H2O m"spe(8)"g"spc(12)"g"
94 print"gi Pressure m"spec(8)"psi"spec(1a, "psi"
95 print"gi Voltage ="spe< (8)"V"spe<12)"V"
```



```
97 print"gi Depth ="spec(8)" Cm"spec(11)"cm"
98 fori=33114to33594step40:pokei, 93:pokei +13,93 znext:fori=1 to 26
98 forim33114to33\945tep40:pokei,93:pokei<13,93 mnext:forimito26
99 print","snextiprint",; forizitol2ipr
101 getas:ifa$mwnthenie1
102 printas: ifat=" S"thenfor im33648to33720 spokei, 32 inext :q0to104
103 printtab(15)"Try againnmg":gotol00
104 C=1 :q0sub3:q0sub50:z1 m l1 :z3=tr:c=3:90sub3:q0sub56:22=12:24=tr :q0to63
```



```
106 print*2,z1;c$;23:print#3,22;c$;24:c lose1 :dc lose#2:dc loseM3:print"E";
```



```
5% zr=1:ifk=pthemreturm
58 p=k:ifalz**thendopen*4,(f5(k)),d0
59 ifdzz=1thenclopenil4,(f$(k)),di
```



```
61 fori=1ton(k):input*4,s(i), te(i), l<i),t1<i), e(i),t2(i),u\langlei),t3(i),p(i),t4(i)
62 nextgdc losew4
```



```
64 ifasc(q;)>64 andasc<q$>< <91 thenq$=chm$(asc(q$)+128)
65 w$#w$+q$:next:f$(k)=w$:pgmint(n(k)/40+. 999):z#(78- len(f$(k)))/2
6 6 \text { return}
67 open1,4;open2,4,2:open3,4,1:c=0:a=1:b=40:ifb>n\langlek) thenb=n(k)
```



```
69 c=c+1:gosubs:fori=atob
70 print(3,s(i),t日(i), l(i),ti(i),c(i),t2(i),w(i),t3(i),p(i),t4(i):next
```



```
72 ifb=n(k)tinen75
3 a=a+40:b=b+40:ifb)n(k) thenbmen(k)
4 gosub6:goto69
5 pr int*1,f+$:c lose1 :c lose2 :c lose 3 a i foq=4 them7?
6 \text { return}
```



```
8 open1,4 zopen2,4,2:open3,4,1 :gosub2 scp=0:a=1:b=40:ifb)n(k)thenbmin(k)
79 cpmep+1 :qosubi7:forimatob
80 t2=(t2(i)+t2(i-1))/2:t3=(t3(i)+t3(i-1))/2:t=(t2+t3)/2-t
```



```
82 vg=0:r=0:drm0:cd=(int<(c(i)/.618859)+.5))/180
ifl(i)<\Othenugmu(i)/I<i)
4 ifc(i)<>0thenr=1000尔u(i)/c(i)
```



```
89 wm=int(um+. S) :print*3,wr, dr,vg,Cd,r, ld,we, wm :mext
90 print"1, 1f$ lf$tmb(64)"Page"cp" of "pg
91 iffo=n(k) cinen94
92 2펴+40:bmb+40:ifb>n<k) thenb=n(k)
93 gosub6:goto79
94 printwi,ff$:c lose1 sc lose2 zc lose3 : ifqu4 then 123
9 5 \text { return}
96 print"rp":forim1to20:print"交 "s snext
```



```
98 print"'m"; sfori=1 to20 sprint"' "ymextspmintireturn
```



```
100 n=300: lf$=chr $(18):ff$=chr $(12):dimf$(50),d$(50),n(50),s(300)
101 dimt0(300), 1(309), t1 (380), c(300), t2(300),v(380), t3(300),p(380),t4(300)
102 open5,4,5:fori=1 to6 :reada:asma$+chr$(a) snext:printes,as
```



```
184 printtab(19)"1 - Rau Data"gprinttab(19) "82 - Computed Data
```



```
188 geta$$ifqq$=w"theni08
109 printqs;qumal(qs):ifa(lorop)Sthemprinttab(15)"#1RY FCAIN":gotol07
```



```
111 ifzz<\1 thengosub28
112 ifzz=1 thengosub35
113 onaqosub67,77,123,124,67
```



```
116 ifz$x"n"thenopen 1,4 :printt%1, ff$tc loselsend
```

[^10]```
1 dim m(100),b(100),c(100),d(100),e(180),w(180),f(100),x(100),g$(100)
 2 lf$mchr$(10):r$=chrs(13):ensmchrs(1):ff$=Chrs(12)
 3 poke59468,14:open,.4,7 :pr int47:c lose7
 4 open!3,4,13:print%13ac lose13:open15,4,15aprintwi5:c lose15
 5 open5,4,5:fork=1to6:readio:b$=b$+chr$(b) :next:printw5,b$;:C lose5:goto31
 print"yssulsexfissusm" :printtab(8)"data mav not be correct yet"
 fori=1 to200 : poke59468,12 spoke59468,14 inext:goto50
 for k=1to10:getop:next
 getqs:if q$=""gotos
 10 return
 1 idm1 :j=0 zprintzprint"yEnter ram data for slurry concentration.":print
 2 input"Test Code";tes:printsimput"Tare";t:print
 13 input"Tare + Slurry";tssprintsinput"Tare + Coal"ztciprint
 14 input"Weigint of coal added"gcasprint
 5 printyprint"Concentration of chemical solution":input"gMolecular Wt. "gmw
 6 input"s*eight of chemical";wl:input"gMolume of water";w2
17 input"gRre data correct (y/n) ";qsisifq$="y"then20
18 if q|="n"then\1
19 goto17
```



```
21 print": Enter a F for Pmount when through"
22 printtab(13)"enteringy data." sprint
23 j=j+1:a<j)=j:imput"Pmount of chemical added ";b$sb(j)>mual<b$)
24 ifbs="q"thenj=j-1 : goto50
25 inpur""qZeta potential ";c(j)
26 input"ySpecific conductivity "gd<j>
27 input"$I emperature m;e(j):print
```




```
30 goto21
31 print"尤staMain Menu:"gprint
32 print" 1- Input data" sprint
33 print" 2- Review data" sprint
34 print" 3- Edit data":print
35 print" 4- Print hard copy of data"sprint
36 print" 5- Saus deta on a disk"tprint
37 print" 6- Read data from a disk" spmint
38 print" P- Exit program"sprint:"pmint
39 print" Enter Option No. "gosubs
49 i fua l (qs) =5 andi d=1 thengoto6
41 onval <q$ >gotol1,43,97,182,205,234,253
42 goto32
43 print"棌目 Review Menus" sprint
44 print"" 1- Raw data"sprint
46 print" 3-Return to main menu"sprintiprint
47 print" Enter Option NO. "ggosubs
48 onvel(a;)goto50,75,31
49 goto43
59 mx=j :f=1: : =1=15
51 print"&" tab(3)"Point"spe(3) "Chem. "spe(3)"Zeta"spe(3)"Spec."spe(3)"Temp."
52 printtab(4) "No. "spc(5)"Pdd. "spc(3) "Pot."spe(3) "Cond. "spc(4)"(E)"
53 if m><<15 then lmmx:f=1
54 i=1:for m=ftol:imi+1
55 print""m" for k=itoi sprint"g"; inext
56 print"
```

5% printtab(4)a(m)tab(11)b(m)tab(19)c(m)tab(26)d(a)tab<<34)e(n) inext

```

```

59 gosubB:i fa%="u"thenf=f-15:lm1-15:goto67
60 i fq$="d"thenfmf+15:l=1+15:goto69
61 i fq|="/"thenf=4-1: i= 1-1 :qoto67
62 ifqss="*N thenf=f+1: : l= 1+1 :goto69
63 ifqss="4" thenf=1 : i=15:goto53
64 ifq$=" ("then l=mx :f=mx-14:goto69
65 ifcys=""r"then71
66 goto59
67 i+ff<8thenf=1: t=15
68 print"g" sprint"\0" :goto53
69 if 1>mxthen l=mx: f=mx-14
70 print"琞" sprint"s" 2goto53
71 ifid=gthen31
72 input"gare data correct (y/n) ";q$1ifq$*"y"thenid=0:soto31
73 if q\$m= n"then97
74 goto72
75 ma=j:g=1:v=15
76 print"边"tab(3)"Point"spe(3)"Final"spec(3)"Zeta"spec(3)"Spec. "spe(3)"Temp."
77 pminttab(4)"No."spe(4)"Conc."spe(3)"Pot."spc(3)"Cond. "spc(4)"(C)"
78 printtab(18)* (10E-5)"
79 if ma<15 then uxmagg=1
88 z=2:for y=gtou:z=z+1
81 print"\#":for i=1toz:print"g"; smext
82 print"
"sppint"ma
83 printtab(4)a(y)tab(1Q)x(y)tab(19)c(y)tab(26)d(y)tab(34)e(y) inext

```

```

85 gosub8: if qs=""u"thengmg-15:umu-15:goto93
86 ifas="c""theng=g+15\&umu+15:qoto95
87 ifq\$=" '"theng=g-1:v=u-1:g0to93
88 ifqS="亲" theng=g+1:u=u+1:goto95
89 ifq|>" f"theng=1: \&u=15:gotop9

90 ifq\$$=" l" thenumma:g-xma-14:g0to95
91 i fas$="r"then31
92 goto85
93 ifg<ethengs=1 :u=15
94 print*"g"n|print"g" zgoto?9
95 ifu)mathenumma:g=㸷a-14
96 print"g"0:print" <r" :goto79
``````
9 8 print" 1- Correct data":print
99 print" 2- Delete data":print
103 print" 3- Insert data" sprint
101 porint" 4- Renumber points" sprint
102 print" 5- Return to main menu""printsprint
103 print" Enter Option No.":qosub8
104 onval<a\$)goto106,129,150,177,31
105 goto9?
106 print": To exit correction mode "
107 porint"
108 print"8wisk"
109 imput"Point No. "gnspmint
110 ifi d=1 andn=0then50
111 i fn=0then9?
i12 print"Data values originally entered:" sprint
i12 print"Data values originally entered:"sprint
113 print" Amount of chemical acdoled" ib (n) spmint
114 print" Zeta Potential %o(n):print
115 print" Specific Conchuctivity ";d(n):print
lis print" Specific Concuctivity %d(n):print
``` ```

118	input＂Amount of chemical solded＂ircsprint
119	input＂Zeta Potential＂irziprint
120	input＂Specific Conductivity＂irssprint
121	input＂Temperature＂grtsprintsprint
122	
123	ifatm＂${ }^{\text {ch }}$ then 186
124	gotol22
125	$a(n)=n: b(n)=r c: c(n) \pm r z: d(n)=x r s i e(n)=r t$
126	$\omega(n)=c s{ }^{\text {b }}$ b $(n): f(n)=w(n) /(t w+b(n))$
127	
128	$90 t 0106$
129	print＂3 ${ }^{\text {a }}$（o exit deletion mode＂
130	print＂type 8 日 for Point No．＂
131	print＂dixtic
132	imput＂Point No．＂insprint
133	ifidxi andim ${ }^{\text {athen50 }}$
134	i frimbthen97
135	print＂Data ualues originally entereds ${ }^{\text {cipprint }}$
136	print＂Pmount of chemical adched＂ $\operatorname{st}$（n）：print
137	print＂Zeta Potential＂zc（n）sprint
138	print＂Specific Conductivity msd（n）sprint
139	print＂Temperature＂se（n）sprintsprint
148	print＊Is this the point you＂
141	
142	ifat ${ }^{\text {P }}$＂$n^{\text {＂}}$ then 129
143	printsinput＂Are you sure（y／n）＂saszprintsifatw＂y＂theni45
144	ifas＝＂n＂then140
145	$x=j-1$ forkwntox
146	$b(k)=b(k+1): c(k)=c(k+1): d(k)=d(k+1): 10(k)=e(k+1)$
147	$f(k)=f(k+1): w(k)=w(k+1): x(k)=x(k+1)$ inext
148	$\mathbf{j}=\mathbf{j}-1$
149	90tol29
150	print＂辺 To exit insertion mode＂
151	print＂type 18 Effor Point No．＂
152	print＂ Prext＂$^{\text {Pret }}$
153	print＂There are＂sj；＂Point Noss． s （print
154	input＂New Point No．＂insprint
155	ifidelandmzethen50
156	ifme8then9？
157	input＂Pmount of chemical moded＂inc：print
$\pm 58$	imput＂Zeta Potential＂anzaprint
159	imput＂Specific Conductivity＂snssprint
160	input＂Temperature＂gntsprintiprint
161	input＂Are data correct（ $y / n$ ）＂；qs：ifa\＄三＂y＂then163
162	gotol50
163	
164	
165	
166	for l＝itoj
167	ifumithen 169
168	ifnka（l）thenfe 1 ：u＝1
169	next
170	formsjtofstep－1：z＝m＋1：a（z）＝a（m）：b（z）＝b（m）：c（z）＝c（m）：d（z）＝d（m）
171	$e(z)=0(m): \omega(z)=m(m): f(z)=\sim f(m): x(z)=x(m)$
172	next
173	
174	w（f）$=c \operatorname{sinb}(f): f(f)={ }_{\text {a }}(f) /(t y+b(f))$
175	$x(f)=$（ int $(f(f)=1889+0.5)) / 10804: j=j+1$
176	gotol50

```
```

177 forf=1tojza(f)=f:next
178 print"Ea<sers": :print"The last Point No. is ":j
179 print:print"To return to Edit Menu press Dirm"2gosubs
188 ifq\&="r"then9?
181 gotol78
182 open1,4,1:open2,4,2:open3,4:pprint(13,1+$1+51+5 1+5
183 print"⿱⿱亠䒑口心
184 printm3,enstab(13)"Zeta Potential Investigation" l+5 lf% 1f$
185 zz=int((72-len(tes))/2):gosub256:print*3,tab(z2)"Test Code - "tpolf$1f$
186 open4,4 sprint*3,tab(14)"Final"spe(12)"Zeta"spe(11)"Specific"
187 print"3,tab(10)"Concentration"spe(6)"Potential"spc(6)"Conductivity";
188 print*3,spc(7)"Temperature"
189 print\#4,tab(15)"(M)*spec(12)"(mV)"spoc(10)"("chr$(254)"mhos/cm)";
190 printw3,tab(12)"(C)"
191 print#3,tab(10); for l=1to64 sprint 3,"-n; snext sprintw3,r$; lf\$
192 printw2,tab(11)"z.999999999 $99.9 9990%;
193 print*2,spc(15)"99.9"
194 fork=1toj:print(1,f(k);c(k);d(k);e(k); lf$:ifk)20thenpp=1
195 ifpr< \10rpp=1 then285

```


```

198 print*3,tab(zz)>"Test Code - "to\$ lf$l&$
199 print*3,tab(14)"Final"spoc(12) "Zeta"spc(11)"Specific"
200 print"3,tab(10)"Concentration"spc(6)"Potential"spc(6)"Conductivity";
201 print*3,5pC(7)"Termperature"
202 print*4,tab(13)"(g/mI)"spc(12)"(mV)"spc(10)"("chrs(254)"mhos/cm)";
203 print*3,tab(12)"(C)"
204 printw3,tab(10);:for l=1to64:printw3,""-m;:next:printw3,r*:lf\$
205 next:print*3,ff$:C lose1 :c lose2:C lose3:C lose4 :pr=0 ;pp=0:goto31
206 print"2" :goto208
207 input"ssEnter fi lename";tc$sprint
208 input"\&Which disk drive \#B or 1 S";q:print
299 ifqu=0 thendopenll4, (tc }\$\mathrm{ ), d0,w:90212
210 i fa=1 thendopen\#4, (tc \$), di, w:goto212
211 goto208
212 ifds=62thernor int"Mum"dss:ck losen4 :goto217
213 ifds<>0thenprint"流"dss:dc lose\#4 :goto207

```

```

215 ifq=1 thendopen*5,(tws), di,w
216 goto224
217 input"glould you like a disk directory ";z%:ifleft$(z$,1)="y"then220
218 if left$(2$,1)="n"then207
219 goto217
22g input"zWhich disk drive % 00 0% 1 9 "sq
221 print"\&Remember <HSPRCEBARDD stops the listing|":ifog|0themdirectoryd0:goto207
222 ifq=1 thendirectoryal :goto207
223 goto221
224 print":",sprint" I'm saving data. It has"j" points"
225 print*4,j:forpm1tojsprinta(p);b(p);c(p);d(p);e(p)
226 print*4,a(p);r\#;b(p);r$;c(p);r$;d(p);r$;p(p): snext
227 printw4,t;r&;ts;rs;tc;r$;ca;r\#;w1;r$;m2;r$smm

```

```

229 print($5,tc$:forpmitoj:printw5,os(p) smext
238 dc lose*4:dc lose*5:goto31
231 print"道";sprinttab(15)"Data Read"
232 input"\&EEEnter fi lename";rd$:tc$mrad

```

```

234 ifq=1 thendopen|4, (rds), d1:50,0235
235 goto233
236 ifds=62thenpr int"寀""ds\$:dc lose*4 :goto239

```

```

238 goto246
239 input"\Nould yow like a disk directory ";25:iflefts<zs,1)="y"then242
240 if left$(25,1)="n" then232
241 goto239
242 input"$Which disk drive \#0 or 1 | ":q
243 print"%Remember S%SPACEBRRDD stops the listing|":ifq=0thendirectoryd0:goto232
244 ifq=1 thendirectoryd1:goto232
245 goto243
246 imput*4,j :print"E"j" data points"
247 forp=1 toj: input 4,a(p),b(p), ( (p),d(p), e(p):next
248 input* 4,t,ts,tc, ca,v1,w2,mm
249 сs=w1/(\omega2:wc=te-t:шw=ts-te:tw=ca|(wu/we):fork=1toj
250 f(k)=<(cs*b(k)<<tw+b(k))) 1000)/mu
251x(k)=(int(f(k)*10*9+0.5))/10$4
252 printa(k);b(k);c(k);d(k);e(k):next
253 dc lose|44:goto31
254 end
255 data 1,62,4,4,60,2
255 tp$="": ln= len(tc$):forh=1toln:y$=mids(tcs,h,1) :x=asc(y$)
257 ifx<91 andx>64 thenx=x+128:y$=chr $(x)
258 tp$=tp$+y$ inext:return

```
```

1 soto61
2 printtab(15)"gTRY AGRIN" aretumn
3 imput** 4, 5,t0, l, t1, c,t2,v,t3,P,t4 ireturn
4 j=0:gosubS8:input"8Which drive is ram data disk in odszdkmual(ds)
5 i folk<Qoralk) I thengosub2 :goto4
6 i folk=0thendopen\#4,"tests", de scww=1
7 ifolk=1 thendopen*4, "tests", di sdwme
8 j=j+1 : inputam, f$(j),d$(j),n(j)
9 ifst=64thendic losen4igotoli
10 goto8
11 print"% Place PED/WYL disk in drive "du
12 printtab(8)"sPress <ERETURNg> when ready"
13 geta$: ifol$n" "then13
14 ifatsmchrs(13)them16
15 gosub2:goto13
16 y0Sum58:mx=j:f=1:l=10
17 print"Extet**)" sprinttab(3)"No. "spe(6)"Test Code"spe(7)"Date" sprint
18 ifmx<10then lmax:fm1

```

```

20 print"
21 printtab(2)mtab(12)f$(m)tab(26)ds(m):mext:print
22 print"% To seroll press u,d,l,%,f,l
23 print"{ Press r to enable file no. inpout
24 getak: ifongm" "then24
25 ifq"$="u"thenfrf-10:1=1-10:goto33
26 ifq%="d"thenfrf+10:l=l+10:goto35
27 ifq$m" '"thenfmf-1: {=1-1:qoto33
28 ifa&="涪"thenfmf+1: {=1+1:goto35
29 ifo%=""f"thenf=1:l=10:90to33
30 ifa$=" l" then lmmx:fmmx-9:goto3S
31 ifq5="r"then37
32 goto22
33 iff<0thenf=1:I=10

```

```

35 if <br>axthenlmax : fmmx-9
36 print"g"gprint"g" sgotol8
37 imput"gEEnter fi le mo. "gkzifk<lork>jthengosub2:qoto37

```



```

42 {=us+ry :next:f$(k)=us:pg=int(n(k)/40+. 999):z=(78-len<f$(k)>)/2:return

```

```

44 us$=+$(k)+*"+od\$(k):pmintw5,w
45 t=0:we=0:um=0; i 0m0:i 1=0: i 2m0: i 3=0: i 4m0: i 5"0: i 6=0

```


```

48 21m(t2+i2)/2:z2=(t3+i 3)/2:t=(z1+z2)/2-t : ifi6m0theni6=1

```

```

50 r=0:dr=0:if1<0thervgm=(int<(v/l)負10+.5)>/10

```

```

52 lw=idEifld<ethen lwne0

```


```

55 ummint(wm+.5):i0=t日:i 1=55:i2=t2:i 3=t3:i4mc:i5mu:i6ml

```

 58 print＂迢＂：fori＝1to28：print＂n＂；：next
59 print＂月 Pressurized Electroosmotic Dewatering＂
60 print＂T＂；：forimitoze：print＂y＂；：next：print：return
61 poke \(59468,14: c s=c h r s(13)\) sdinfs（160），ds（1e日），\(n(180)\)
62 ifzz＜＞1 thengosub4 ：gosub 43
63 ifzz＝1 thengosub16：gosub43
64 imput＂\({ }^{3}\) Continue \((y / n)\)＂；\(z *\)
 66 ifzs＝＂y＂then68
67 gosub2：goto64
68 imput＂gSame data disks（y／n）＂；zs：ifzs＝＂y＂thenzz＝1：goto62
69 ifz\＄＝＂n＂thenzz＝0：goto62
70 gosub2：goto68

\section*{MENU／SAS}
```

1 poke59468,14mpmint"zurgterumreq lease Wmit ..."nggoto156
2 j=len(p$): fori=1toj :a=peek(pa+asc(mid$(p$,i,1))):printill,chm
3 print*1,chrs<141); ssyswtareturn
4 r$m"":skm1
poke15,0:sysdn:jmpeek(15)-1:forim0toj ya$mchr$(peek\langledb+i)):ifsk=1 then13
ifa$=chr$(13)theni=j sgoto12
7 ifas="!"theni=j:pr=1:gotol1
8 ifasx" \&"then lbm0:pre1:qotol1
9 if a$="" "andlb=1then 12
10 ifas="推"then lb=1 : a$="N :pr=1
11 r$mr$+a$:iflen<r$)\>6orpr=1 thenprint*2, chr$(34)r$chr$(34):printr$:r$="":pr=0
nexti:return
ms=r$+as : ifasmchms(13) theni=j
nexti :sk=0 zreturn
gosub116:open1,6:mhmpeek (53) :poke53,60:pr-intfre(0)

```

```

7 printtab(8)"\&Revised by Leon W. Hieath"
8rd=15361:pa=15760 ; dn=15480:db=15984:co=15561 :wt=15595;wC=15616 :90to20
9print"zs"
print"8800 you wish tos"sprint"sin 1-Logon to NYLBUR"
21 print"" 2 - Reestablish terminal mode"aprint" 3-Upload a text fi le"
22 print" 4-Downlomd a text file":print" 5-Executs a dounloaded fi le"
23 print" 6-Print out a file"zprint" }7\mathrm{ - Exit this program"naprint
24 print"g FOR OPTIONS T3 \& 4F, YOU MUST EE"sprinttab(10)"CONNECTED TO WYLBUR
25 print"\&renter choice - ";:gosudoi0B
26 onva l<as)goto68,76,28,54,81,95,27:goto19
27 poke53,mh:end
28 print"if"sprinttab(14)"gmatext Up load" gprint"gMrOU SHOULD BE LOGGED INTO WYLSBLIR"
29 printtab(8)"RHD IN THE COLLECT MODE.":printsprintigosub103:ife\$="g"then19
30 print"8\&\&86is! Press C"HONEgD to EXIT option" spoint"mmmm"

```

```

32 ifa$="Q"thendopen"2,(f$), d0:goto35
33 i fa$="1 "thendopen"2,(f$),di %goto35
34 goto31
35 ifds=62themponint"z: %"dzs sdc lose:goto38
36 ifds<人日thenpm int" \argi"dss sde lose:goto28
37 goto45
38 imput"gwould you like a directory ";q$:iflefts(q$,1)=n","then41
39 ifleft$(4$,1)="n"then28
4 0 ~ 9 0 t o 3 8 ~
41 print*81 Reqember spacebar stops listimg"
42 input"\$which disk crrive m;q:ifq=Othendirectoryd0:gosub40:goto31
43 i foq=1 thendirectorydl:g0sub40:90to31
4 4 goto42
4 5 i fols<\0themprint"棌"dss sde lose:goto20

```

```

47 get\#\#,as:printas;:ifst<>ethen51
48 if leri(as)<1then4?
49 a=peek(patasc(as)):ifa<> 141thenprintel,chrs(a) : :goto47
50 print\#1,chr$\langlea\rangle;:5ysurt 8goto47
51 ifas<\chr$(13)thenprint*1,a$;
52 print*1,chr$(141): ssyswt :print(1,chr\$<17):syswt

```


```

55 print"%ristersi Press CFHOMESD to EXIT option" :pmint"monm"

```

```

57 ife\$="E"then19

```
```

58 ifat=r"@"tinendopen*2,(f$),010,w:scoto61
59 ifas=" 1"thendopen"2,(f$), d1,w \&goto61
60 goto56
61 ifds\0thenprint"薏"dss icic lose:goto20

```

```

63 l=ual\langler$\rangle:printsprintl;" lines to transfer"gprintsr$m"m
64 ps="point % unnum":pokewe,10:gosum2zgosubN
65 getes:ife\$="g"thende lose:goto19

```

```

print"g" sprinttab(9) "4%DOWNLOADING COMPLETED" sde lose igoto20
8 print"四":printtab(14)"\$WYLBUR LOGON":print"gP lease follow these steps:"
print"gi. Type matyllmatf0a and then \#atnig."
print"\&O NOTES: You must get an";
1 print" EOK=1 response for":print"
print" repeat the command."
0-int""s. When you get the ICONNECT{1 response,"
4 print" type %ooomicles twice."
goto77
7 print"zon:printtab(8)"gwilermimal Reestablishment*
77 print""itRemenber cursor left m backspace"
78 print" cursor doun w control Q"

```

```

80 print:h=1 esysrd:gotol9
81 print"z"tab(16)"%.\&EXECUTE" sprint"gigThis option will load a sequential fi le"
82 print"from the disk as a program.":pmint"storhis option mill also erase the WYLBL
83 print"COMMLNICATION PROGRAM. If you have" :print"second thoughts, press < HOMEPD I
84 print"return to the menu."sponint"goresss CRETURNFD to contimue"
85 getas:ifas=" "then85
86 ifas="\#"then19
ifas<\chr\$(13)then81

```

```

89 print"gils the file disk in drive morn 1; ?";sqosuble8
90 ife\$="EN"thendc lose:qoto19
91 i fas< "g"oras< "1 "then89
92 print"寀新o begin loading the file as a program," sprint"type this line:"

```


```

open3,4 zps="set w first" spokewc,17 sgosub2 :p$="count" apokewc, 10 :gosub2
gosub4 : l=um\<r$) sprintsprintlg" limes to print"
97 pss"point unnum":pokewc,10:gosub2 sgosub4 sprintrs;
98 if len(r$)<62themprint**"," "r$;:goto180

```

```

100 getes: i fes\#" \#" thenc lose3 :gotol9
101 l=l-1:ifl>Qthemp{="set mext":pokeme, 17:gosub2:goto97
102 c lose3sprint"昷" sprinttab(10) "\#PPRINTING CONPLETED" sgoto20
103 print"gEnter PET Fi lename: "; :gosuble8:i fes="E"thenreturn
104 fs=as:ifl=0thenprint:goto103
105 print"%rsi lename is ""f5""" areturn

```

```

107 print(1, chr$(141);isyswtireturn
108 a\leqslant=w" : l=0 apoke167,0
109 getet;ife$="wtheni09
110 ife$="g"ore$=chrs(13)thenprintireturn
111 ife$\>chr$<20>mode$<>."#F thengoto114
112 l=1-1:ifl<0then 1=0:goto109
113 a$= left$<as, l) sppintchr$(20);190to109
114 ifasc(e$)(32thengoto109
125 printe$;:l=| i+1 :n\$=as+os : gotol 00
116 fori=15360to15984 :readaspokei, m:rext:fori=826to919:reada:pokei, ammextireturn
117 data0,32,204,255,32,174,241,32,219,60,160,0,132,150,32,192,241,164,150

```
```

118 data208,28,32,173,60,240,23,234,201,17,240,18, 72,173,19,232,41,254,141
119 data19,232,32,201,60,104,32,2,226,288,211,169, $0,133,167,173,19,232,9,1$
120 data141,19,232,32,13,242,240,194,72,32,204,255,184,201,19,240,44
121 data201,3,240,40,201,18,240,31
122 data201,146,240,27,174, 0, 60, 240, $8,162,0,142,0,60,32,185,60$
123 data32,180,60,162,1, 32,201,255,32,210, 255, 76, 1, 60,141, 0, 60,240,138,96
124 data32,204,255,32,174,241,32,219,60,160,0,132,150,32,192,241,164,150,208
125 datal $6,32,173,60,240,11,164,15,153,112,62,230,15,201,17,240,13,32,13$
126 data242,240,218,201,3,240,4,201,19,288,210,32,204,255,96,41,127,170,189
127 datal $6,61,96,179,189,144,61,96,41,127,201,64,144,7,201,95,176,3,41,31$
128 data $96,169,0,96,169,1,133,167,165,170,240,9,169,0,133,170,165,169,3$ ?
129 data6,230,96,72,138,72,152,72,169,6,133,212,169,255,133,211, 76,198,247
130 data32,204,255,32,174,241,32,219,60,160,0,132,150
131 data32,192,241,164,150,208,4,201,17,240,9,32,13,242
132 data24e,230,201,3,208,226,32,204,255,96
133 data $0,0,0,0,0,0,0,0,157, \theta, \theta, 0,0,13, \theta, 0,0,17,0,0$
134 data $0,0,0,0,0,0,0,0,0,0,0,0,32,33,34,35,36,37,38,39$
135 data40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59
136 data $50,61,62,63,64,193,194,195,196,197,198,199,200,201,202,203,204,205$
137 data206,207,208,209,210,211,212,213,214,215,216,217,218
138 data91,92,93,94,95,96,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80
139 data81, $82,83,84,85,86,87,88,89,90,181,221,182,171,20$
140 datal, 129, $130,3,132,5,6,135,136,9,10,139,12,141,142,15,144$
141 datal7,18,147,255,149,150,23,24,153,154,27,156,29,30,159,160
142 data33,34,163,36,165,166,39,40,169,170,43,172,45,46,175,48
143 data177,178,51,180,53,54,183,184,57,58,187,60,189,190,63,192
144 data $225,226,99,228,101,102,231,232,105,106,235,108,237,238$
145 datal11,240,113,114,243,116,245,246,119,120,249,250,219,92,221,222,95
146 data $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
147 data0, $0,0,0,0,0,0,0,0,0,0,141,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,0,0,160$
148 data $0, \theta, \theta$
149 data $25,66,195,68,197,198,71,72,291,202,75,204,77,78,297,80$
150 dat $2209,210,83,212,85,86,215,216,89,90,123,252,125,126, \theta, 0$
151 datal2 $12,166,144,142,128,3,166,145,142,129,3,88,120,162,94,134,144,162,3$
152 datal $34,145,88,96,120,172,128,3,132,144,172,129,3,132,145,88,96,166,158$
153 data $224,10,240,27,32,81,3,32,130,3,32,228,255,166,158,157,111,2,232,134$
154 datal $58,166,150,208,3,32,70,3,32,294,255,76,0,0,72,72,72,169,8,133,212$
155 datal $69,99,133,211,169,10,133,210,169,0,133,150,76,198,247$

```



```

159 printtab(10)"g66-Dump Wylbur files"
160 printtab (8) "give Enter option no. 1 ",

```

```

161 getqf: ifas=" "then 161
162 quval(qF):printa:ifa(1ora)6themprinttab(15)"\&्वाRY PGAIN" sgotol6e
163 if q=1 thend load"moctwy 1 , de srun
164 if $q=2$ then 15
165 if $q=3$ thend load "ni tedwn", de arun
165 if $q=3$ thend load "ni tedwn", de sun
167 i fqe5thend load"ur itefet", de: run
168 if $q=6$ thend load "dumpo $i$ le", $d 8$ :run

```

\section*{MODWY}

```

2 gosub96:0pen1,6:mh*peek(53):poke53,60 sprint+re(0)

```

```

4 printtab(8)"\&Reuised by Leon W. Heath" Iprinttab<10)"\& Matthew J. Kramer"
5 rd=15361:pa=15760:dn=15480:db=15984:co=15561:ut=15595:wc=15616:90to?
6 \mp@code { p r i n t " z \% " }

```

```

8 print" 2 - Reestablish terminal mode"sprint" 3-Upload a text file"
9print" 4-Down laad a text fi le":print", 5-Execute a down loaded fi le"
10 print" G-PPrint out a file":print" % - Exit program"
11 print"g| FOR OPTIONS \#S \& 4F, YOU MUST BE"iprinttab<IE>"CONNECTED TO WYLBUR
12 print"spEnter choice - ";:gosub88
13 onval(as)goto46,52,15,32,56,72,14:90to6
poke53,mh:end
print"zal" aprinttab(14)"\#zatext Up load" aprint"\&\&HOU SHCULD BE LOGGED INTO WYLBUR"
printtab(8)"RND IN THE COLLECT MODE."gprintsprint:gosub80:ifes="g"then6

```

```

print"Up load Fi le From Disk Drive Fo or 1g ?"; sgosub8simoint"sescessel"
19 ifesm"E"then6
20 ifas=="0"thenciopen 2,(f5),00:goto23
21 i fas=""1"thendopenin2,(ts), di:qoto23
22 goto 18
23 ifds<>Othenprint"yss"dss sdc lose agoto7
24 print"simData upload wi ll now begin." spokewc,17igetes:ifes="g"then30
25 get\#2,as:printas;:ifst<\Othen29
25 qetw, as iprintas;ififst<>0then
26 iflen(a5)<1then25

```

```

print\#1,chr$\a); :5ysut:9%to25
i+a$人Chr$(13)thenprint*1, a5;
print*1,chrs(141); :syswt aprint(1, chrs(17):sysut
print"g" sprinttato(10) "gituPLOADING COMPLETED":cc: lose igoto7
print"z":printtab(13)"ssir ext Down load" sgosubB0: ife$m"g"then6

```


```

35 ifas="0"thenclopen\#2,(fs), d0,w 2goto38

```

```

goto34
38 i fols<>日themprint" "rex" ds $:de lose:goto?
39 p$="set (H first" :pokewe, 17:gosub83 sp$="count" spokewc, 10:q05ub83 s gosub85
40 l=ual(r)s):print:print l;" lines to transfer"sprint
41 p$m"point 率 unnum" zpokewc, 10:gosumb83:gosum85
42 print䋨,rs;:printrs;
43 getes: ifeS="S"thendc lose:goto6
44 i=1-1:if 1>0thenp\$="set next":pokewe, 17:gosuib83:goto41
45 print"z":printtab(9)""心DOWNLOADING COMPLETED":dc lose:goto7
46 print"z" :printtab(14)"FWYLBUR LOGON" iprint"\&p lease follow these steps:"

```

```

4 8 print" 苜目 response for" sprint" each command. If you don't,"
49 print" repeat the command."
49 print" repeat the command."
50 print"\&2. When you get the gCONNECT: response, ":prim
53 print"Remember cursor left = backspace" iprinttab(9)"cursor down m control O"
54 print"g Press <mHOMESD to return to menu":ifh<3Bthemprint\#1,chrm(141)
55 print:in=1 :5ysrd:goto6
56 print"{采tab(16)"raEXECUTE":print""riThis option will load a sequential file"

```

\footnotetext{
57 print＂from the disk as a program．＂
58 print＂E®This option will also erase the WYLBUR＂
59 print＂COMMUNICATION PROGRAM．If you have＂
60 print＂second thoughts，press＜IHOMESD to＂
61 print＂return to the metiu．＂iprint＂Epress＜ZRETURNDD to continue＂
62 getas：ifa\＄m＂＂then62
63 ifasm＂\({ }^{7}\)＂then 5
64 ifasl＞ehr\＄（13）then56
65 print＂
66 print＂IIs the Press 〈YOMES to EXIT Option＂：sosub80：ife\＄＝＂E＂then6
66 print＂位s the file disk in drive 70 or 11 ？＂；：gosub88
67 ifes＝＂品＂thendc lose sgoto6
68 ifas＜＞＂ 0 ＂or as＜＞＂1＂then66
69 print＂esio begin loading the file as a program，＂：print＂type this line：＂

73 gosub85：laval（r\＄）sprintaprintly＂lines to print＂
74 p\＄＝＂point wnnum＂spokewc，10：gosub83：gosub85：printrs；
75 iflen（r\(\$\rangle<79\) thenprint＊3，＂＂r\＄；：goto 3 7

77 getes：i fesm＂\({ }^{2}\)＂thenc lose3：gotos
\(781=1-1: i f 1 \nu 0\) thenp \(\$=\)＂set next＂spokewc， 17 ：gosub83：goto 74

80 print＂\＆Enter PET Fi lename：＂；：gosub88：ife\＄＝＂F＂thenreturn
81 f\＄＝as：ifl＝0thenprintsgoto8

A printh1，chr \(\$(141): 25 y\) sut：return

86 r\＄＝r\＄＋as：ifasmehr \(\$(13)\) theni＝j
87 nexti ireturn
a\＄＝＂n：l＝0 ：pooke167，0
89 getes：\(i\) fesm＂＂then 89
90 ife \(\$=\)＂\({ }^{\text {E＂}}\) ore \(\$ \mathrm{Fchr} \$(13)\) thenprint：return
91 ifes \(\left\langle\right.\) Chehr \(\$(28)\) andes \(\left\rangle\right.\)＂\({ }^{2}\)＂thengoto94
92 l＝1－1：ifl＜0then l＝0：goto89
93 a\＄＝left\＄（as，1）：printchr \(\$(20)\) ：：goto89
94 ifacces）＜32thengoto 89
95 printe \(5 ;: l=l+1\) ：as \(=\) astes ：goto89
96 fori＝15360tol 15984 ：reada：pokei，a inext ：fori \(=826\) to 919 ：readz spokei，a next
97 data0，32，204，255，32，174，241，32，219，60，160， \(0,132,150,32,192,241,164,150\)
98 data208，28，32，173，60，240，23，234，201，17，240，18，72，173，19，232，41， 254,141
99 data19，232，32，201，60，104，32，2，226，208，211，169，0，133，167，173，19，232，9，1
100 datal \(41,19,232,32,13,242,240,194,72,32,204,255,184,201,19,240,44\)
101 data201，3，240，40，201，18，240，31
102 data201，146， \(240,27,174,0,60,240,8,162,0,142,0,60,32,185,68\)

104 data32，284，255，32，174，241，32，219，60，160，0，132，159，32，192，241，164，150，208
105 datal6，32，173，60，240，11，164，15，153，112，62，236，15，201，17，240，13，32，13
106 data242，240，218，201，3，240，4，291，19，208，210，32，204，255，96，41，127，170，189
197 datal6， \(61,96,170,189,144,61,96,41,127,201,64,144,7,201,95,176,3,41,31\)
108 data96，169， \(0,96,169,1,133,167,165,170,240,9,169,0,133,179,165,169,32\)
109 data6， \(230,96,72,138,72,152,72,169,6,133,212,169,255,133,211,76,198,247\)
110 data32，204，255，32，174，241，32，219，60，160，0，132，150
111 data32，192，241，164，150，208，4，201，17，240，9，32，13，242
112 data \(240,230,201,3,208,226,32,294,255,96\)
113 data \(0,0,0,0,0,0,0,0,157,0,0, \theta, 0,13,0,0, \theta, 17,0,0\)
114 data \(0,0,0,0,0,0,0,0,0,0,0,0,32,33,34,35,36,37,36,39\)
115 data \(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59\)
116 data60，61，62，63，64，193，194，195，196，197，198，199，200，201，202，203，204，205
}

117 data206,207,208,209,210,211,212,213,214,215,216,217,218
118 data91, \(92,93,94,95,96,65,65,67,68,69,76,71,72,73,74,75,76,77,78,79,80\)
119 data81, \(82,83,84,85,86,87,88,89,98,181,221,182,171,20\)
129 data \(, 129,130,3,132,5,6,135,136,9,10,139,12,141,142,15,144\)
121 data17,18,147,255,149,150,23,24,153,154,27,156,29,30,159,160
122 data33,34,163,36,165,165,39,40,169,170,43,172,45,46,175,48
123 datal \(77,178,51,180,53,54,183,184,57,58,187,60,189,190,63,192\)
124 data225,226,99,223,101,102,231,232,105,106,235,188,237,238
125 datal \(11,240,113,114,243,116,245,246,119,120,249,250,219,92,221,222,95\)
126 data \(0,0\)
127 data0,0,0,0,0,0,0,0,0,0,0,141,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,0,0,160
128 data0, \(, 0, \theta, 0,0,0,0,0,0,0,0,0\)
129 data \(65,66,195,68,197,198,71,72,201,202,75,204,77,78,207,80\)
138 data289,210, \(83,212,85,86,215,216,89,90,123,252,125,126,0,0\)
131 datal \(20,166,144,142,128,3,166,145,142,129,3,88,120,162,94,134,144,162,3\)
132 data134,145, \(88,96,120,172,128,3,132,144,172,129,3,132,145,88,96,166,158\)
133 data224, ie, 240,27,32,81,3,32,130,3,32,228,255,166,158,157,111,2,232,134
134 datal \(58,166,150,208,3,32,79,3,32,204,255,76,0,0,72,72,72,169,8,133,212\)
135 datal \(69,99,133,211,169,10,133,210,169,0,133,158,76,198,247\) :return

\section*{NITEDWN}

```

2 j=len(ps): fori=1 tojsz=peek(pa+asc(mids(ps,i,i)>):print*1, chr$(a);:next
3 printel,chr${141);s5yswtireturn
4 r\$="":skm1
5 poke15,0:sysdn:j=peek<15)-1:fori=0toj:af=chr $(peek(db+i)) :ifsk=1 then13
ifas=chr$(13) theni=j:gotol2
7 ifas="!"theni=j:pp=1
8 ifasm"\&"then lb=0:pr=1
9 ifas="\&"and lb=1 then12
10 ifas=""""then lb=1:at="" :pr=1

```

```

12 nexti:return
13 r$mr$+at:ifas=chr$(13) theni=j
14 nexti :skm0:return
15 print"y_LOGON" :Open1, 6:poke53,60:rdm15361:pa=157660:dn=15480
16 db=15984 :wt=15595:wC=15616:syyrad
17 forq=1 tocq:ps="fet"+str$(n(q)) +" cle":pokerac, 17:gosub2
18 ps="exec from \#nitepet c le":pokewc, 10:gosub2 sgosub4 sprintrs
19 p$="count" spokewc, 10:gosub2:gosub4 :printr*: laval(r$):print l:r$="":sk=0:gosub62
20 p$="set * first" :pokewe,17:gosub2
21 ps="point unnum" spokewc,10:g0sub2:gosub5
22 1= 1-1:if 1>0thenp=""set next":pokewc,17:gosub2:goto21
23 dc lose*2:p\$="pur "+str $(n(q)) spokewc,1B:gosub2 :gosub4:printr$ smextq
24 p:=" logoff C le":mokeruc, 10 sgosum2;ond
25 fori=15360to15984:reada:pokei, amnext
26 dopen⿱艹\, "fetsas", de: inputw?,ca:dimn(200),f$(200), z$(200)
27 fori=1 tocq:inputm, n\i i), f\$(i) :mext :dc lose\#7:printfre(0) sreturn
28 data9,32,204,255,32,174,241,32,219,60,160,8,132,150,32,192,241,164,150
29 data208,28,32,173,60,240,23,234,201,17,240,18,72,173,19,232,41,254,141
39 data19,232,32,201,60,104,32,2,226,288,211,169,0,133,167,173,19,232,9,1
31 data141,19,232,32,13,242,240,194,72,32,204,255,104,201,19,240,44
32 data201,3,240,40,201,18,240,31
33 data201,146,240,27,174,0,60,240,8,162,0,142,0,60,32,185,60
34 data32,180,60,162,1,32,201,255,32,210,255,76,1,60,141,0,60,240,138,96
35 data32,204,255,32,174,241,32,219,68,160,0,132,150,32,192,241,164,150,208
36 data16,32,173,60,240,11,164,15,153,112,62,230,15,201,17,240,13,32,13
37 dat2242,240,218,201,3,240,4,201,19,208,210,32,204,255,96,41,127,170,189
38 data16,51,96,170,189,144,61,96,41,127,201,64,144,7,201,95,176,3,41,31
39 data 96,169,0,96,169,1,133,167,165,170,240,9,169,0,133,170,165,169,32
40 data6,230,96,72,138,72,152,72,169,6,133,212,169,255,133,2111,76,198,247
41 data32,204,255,32,174,241,32,219,60,160,0,132,150
42 data32,192,241,164,150,208,4,201,17,240,9,32,13,242
43 data240,230,201,3,208,226,32,204,255,96
44 data0,0,0,0,0,0,0,0,157,0,0,0,0,13,0,0,0,17,0,0
45 data0,0,0,0,0,0,0,0,0,0,0,0,32,33,34,35,36,37,38,39
46 deta40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59
47 data60,61,62,63,64,193,194,195,196,197,198,199,200,201,202,203,204,205
48 dat2206,207,208,209,210,211,212,213,214,215,216,217,218
49 data91,92,93,94,95,96,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80
49 data91,92,93,94,95,96,65,66,67,68,69,70,71,72,73,74,7
50 data81,82,83,84,85,86,87,88,89,90,181,221,182,171,20
51 datv0,129,130,3,132,5,6,135,136,9,10,139,12,141,142,15,144
52 data17,18,147,255,149,150,23,24,153,154,27,156,29,36,159,160
53 data33,34,163,36,165,166,39,48,169,170,43,172,45,46,175,48
54 datal77,178,51,180,53,54,183,184,57,58,187,60,189,190,63,192
55 dat2225,226,99,228,101,102,231,232,105,106,235,108,237,238
56 datal 11,240,113,114,243,116,245,246,119,120,249,250,219,92,221,222,95
57 data0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

```

58 data \(0, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, 0,141,0,0,0,0,0, \theta, 0,0,0,8,0,0,0,0,0,136,0,0,160\)
59 data, \(\theta, \theta, 0, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta\)
60 data55,66,195,68,197,198, 71, 72,201,202, 75,284,77,78,207,80
61 data209,210, \(33,212,85,86,215,216,89,90,123,252,125,126,8,8\)
62 dopen\#6, "Ceatalog", d1, wsemd6:cata logd1 : dc lose\#6:dopen\#7, "catalog", d1:k=0
\(63 k=k+1\) : input 6 , \(2 \$(k): i f s t 64\) then 65
64 goto63
64 90to63
65 dc losetli :eb=ual(zs(k))
66 bn=. 54 \(1: i f\) fon(ebthendopen \(2,(f s(q))\), \(d 1\), w:goto68
67 dopen\#2, (f\$(a)), d8, w

\section*{DMPPILE}
```

1 poke59468,14 :print" zeserim***swP lease Wait ..."zgosub33:goto15

```

```

praint(1,Chr$(141);:syswt:return
m$="":5k=1
poke15,0:sysdin:j=peok(15)-1 \& forim0toj satmehr{<perek<dib+i>) : i fsk=1then13
ifasmchr{<13) theni=j :goto12
ifas="!"theni=j \&pr=1
ifasz"\&"then lom8:pr=1
ifas=m"N" and lowithen 11

```

```

1 r$mr$+a$:iflen(r$)
2 nexti sreturn
r$=r$+as:i fatm=Chr$(13) theni =j
nexti zskmegreturn
print"c,_0GON" sopen1, 6 : poke53,60 :rdm15361 :pa=15760: dn=15480 : dc=00
Cib=15984:utw15595:wc=15616:5ySrod
dc=1 & gosub26:goto28
p$="exec from wnitepet c le":pokewc, 10:gosub2:gosub4 iprintrs
pssm"count" spokewc, 10:gosub2:gosub4 iprintrs: lmual(rs) :rs=""":sk=0 :gosub>0
ps="set 幸 first":pokewc.17sgosub2
p$="point * unnum" : pokeuc, 10:gosub2zifde<\ 1 thengosub5:goto23
gosub4 :print年2,r$;
l=1-1:ifl>0thenp$z"set 京 next":pokewc, 17 :gosub2:goto21
dc losem2:ifclcmilthenreturn
p$="pur "+str\$(n\q)) :pokewc, 10:gosub2 sqosub4 :printr=s:nextasdc=1

```

```

forq=1toca:input*5,f$(@) sprin'f$(q), snext:dc lose\#5 areturn
forq= 1 toca: iff(\$(q)="LIB"thennexta
ps="use "+fs\langleq\rangle+" c le" :pokewc,10:gosub2 :gosub4 iprintrs
if lefts (r \$ ,5)="RRKIV" themnexta
gosub19:nexta
p$E" logoff cle" :pokewc,10:gosub2 :end
forim15360to15984;readaipokei, mamext
dimn(10日), +5(1080), z$(1BQ)
return
data0, 32,284,255,32,174,241,32,219,60,160,0,132,150,32,192,241,164, 150
data208,28,32,173,60,240,23,234,201,17,240,18,72,173,19,232,41,254,141
data19,232,32,201,60,104,32,2,226,208,211,169,0,133,167,173,19,232,9,1
data141,19,232,32,13,242,240,194,72,32,204,255,104,201,19,240,44
data201,3,240,40,201,18,240,31
data201,146,240,27,174,0,60,240,8,162,0,142,0,60,32,185,60
data32,180,60,162,1,32,201,255,32,210,255,76,1,60,141,0,60,240,138,96
data32,284,255,32,174,241,32,219,60,160,0,132,150,32,192,241,164,150,208
data16,32,173,60,240,11,164,15,153,112,62,230,15,201,17,240,13,32,13
data242,240,218,201,3,240,4,201,19,208,210,32,204,255,96,41,127,170,189
data16,61,96,170,189,144,61,96,41,127,201,64,144,7,201,95,176,3,41,31
data96,169,0,96,169,1,133,167,165,170,240,9,169,0,133,170,165,169,32
data6,230,96,72,138,72,152,72,169,6,133,212,169,255,133,211,76,198,24,
dat 232,204,255,32,174,241,32,219,60,160,0,132,150
datm32,192,241,164,150,208,4,201,17,240,9,32,13,242
data240,20, ,21, ,3,208,226,32,204,,255,96
data}0,0,0,0,0,0,0,0,157,0,0,0,0,13,0,0,0,17,0,
data0,0,0,0,0,0,0,0,0,0,0,0,32,33,34,35,36,37,38,39
dat,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59
data60,61,62,63,64,193,194,195,196,197,198,199,208,201,202,203,204,205
data206,207,288,209,210,211,212,213,214,215,216,217,218

```

\footnotetext{
57 data91,92,93,94,95,96,65,66,67,68,69,70,7i, 72, 73, 74, 75, 76, 77, 78, 79, 80
58 data81, \(82,83,84,85,86,87,88,89,90,131,221,182,171,20\)
59 data \(0,129,130,3,132,5,6,135,136,9,10,139,12,141,142,15,144\)
60 data \(17,18,147,255,149,150,23,24,153,154,27,156,29,30,159,160\)
61 data \(33,34,163,36,165,166,39,40,169,176,43,172,45,46,175,48\)
62 data177,178,51,180,53,54,133,184,57,58,187,60,189,190,63,192
63 data \(225,226,99,228,101,102,231,232,185,106,235,188,237,238\)
64 data111,240,113,114, 243,116,245,246,119,120,249,256,219,92,221,222,95
55 data \(0,0\)的 data, \(0,0,0,0,0,0,0,0,0,0,141,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,0,0,160\) 7 data \(0,0\)
8 data \(65,66,195,68,197,198,71,72,201,202,75,204,77,78,207,80\)
9 data209,210, 83,212,85, 86, 215,216,89,90,123,252,125,126, 8,0
70 dopen"6. "Ccata log", d1, w:cmd6:cata logdi zdc losew6zdopen\#", "cata log", d1 :k=0 71 k=k+1 zinputw?, z\$(k): ifst64theni3
71 kxk+1 \(=1\)
72 goto 1
72 goto 71
73 dc lose 7 :eboual(z\$(k))

}

\section*{PSDPLOT}
```

1.poke5946s,14:c $=Chrs(3):Open 1,6:dim ps(13),ppo(13), ls(14),p(14):qs="n
2 input"Ersmamp le ID ";as:gosub47:si$wbs
3 ifasc>" "then9
4 e$=ehrs<27):printw1,es".(":printw1,"in;"es".i400;0;17:"ef".n;19:"
5 asm"Particle Size <micrometers)":gosub47:pssmbs:asm"Sample ID = ":gosub47
6 s$=b\$:asm"Percent Passing (% YOl.)""gosub47:> \$=b \$
7 ps(1)=176:ps(2)=125:ps(3)=88:ps(4)=62:ps(5)=44 sps(6)=31:ps(7)=22:ps(8)=16
8 pS(9)=11:ps(10)=7.8:ps(11)=5.5:ps(12)=3.9:ps(13)=2.8
9 print"\&Type in Cum. % Finer":fori=1to13:print"\&% finer"ps<i);:inputpp(i)
10 ls(i)=2508m(< log(ps(i)))/(log(18) ) )+1625:p(i)=50%pp(i)+1675 mext
11 print":\$08%GE%88":printtab(12) MP lease Wait ...."
12 print*1,"ip1625,1675,9125,6675;di;"
13 printw1,"Sp1;pa1625,1675;pd;pas125,1675,9125,6675,1625,6675,1625,1675;"
14 print!1,"pa1630,1670,9130,1670,9130,6680,1630,6680,1630,1670;pu;"
15 print|1,"si0.15,0.20;tl1;sp1;cp-. 25,-1; lb1E"
16 print"1,"pal630,1670;cp-1,-.5; lb0g"
17 for x=2to10step1:c=(2500() log(x)/ log(10)))+1625
18 ifx=5thenprint"1,"t1100;pa"c",1670;pd;xt;pu;cp-.25,-1;105घ":goto21
19 ifx=10thenprint"1,"tl100;pa"c",1670;pd;xt;pu;cp-.85,-1;1b10g":goto21
20 print*1,"pa"c",1670;pd;xt;pu;"
21 print*1,"tll;":next
22 forx=20tol08stepl0:c=(2500w( log(x)/ log(10) ) ) +1625
23 ifx=50thenprint\#1,"tl160;pa"c",1670;pd;xt;pu;cp-.85,-1; lb50g":goto26
24 ifx=100themprintw1,"tl100;pa"c",1670;pd;xt;pu;cp-1.5,-1;1b100g":goto26
25 print"1,"pa"c",167Q;pd;xt;pu;"
26 print"1,"tl1;":next
27 forx=200to1080step100:c=(2500m( log(x)/log(10) ) )+1625
28 ifxm500thenprint*1,"t1100;pa"c",1670;pd;xt;pu;cp-1.5,-1;1b500畀":goto31
29 ifx=1000thenprint*1,"t1180;pa"c",1670;cp-2,-1; lb1000g":goto31
30 print","pa"c",1670;pd;xt;pu;"
31 printw1,"tl1;":next
32 forym0to80step20:dm(y)50)+1675:ifym0then34
33 printM1,"tl100;pal630,"d";pd;yt;pu;cp-3.4,-.25; tb"y"g"

```

```

35 print"1,"pal630,6680;cp-3.4,-8.25; lb100g"
36 print"1,"pa5375,1675;cp-13,-2.5; 10"p5"\#"
37 print"\#1,"pa1625,4125;cp-4.5,-6;di0,1; lb"y\$"g" :print\#1,"sp3;"
38 print:1,"iw1630,1670,9130,6675;""
39 forj=1tol3:a= ls(j)-ls(j+1) :b=p(j)-p(j+1):cmatn(b/a):d= ls(j)-50(cos(c)
40 emp(j)-50wsin(c):f={ls(j+1)+50wcos(c) :gmp(j+1)+50)s,in(c)
41 print"1,"pu;pa"ls(j)", "p(j)";pd;ci50,5;pu;"
42 ifj=13gooto44
43 print"1, "pa"d" , "e";pd;pa"f", "g" ;pu;" :next
44 print"1,"iw;di',0;sp1;pa915é,6675;":zn=(13+ len(sis))
45 print"1,"cp"z",0.5; lb"ss"目;sp2; lb"sis"员"

```

```

47 b $="":z=len(as):fori=1 toz:c ($=mids(as,i,i)

```


```

49 b \$mb $+c$:next:return
58 input"Continue (y/n) ";qF:ifq\$m"y"then2
51 ifqs<>"n"thenprint"y Try again":goto50

```


\section*{WRITEFET}

1 poke59468,14:input"zossHow many files are to to fetched ";qzdimn(q),f(q)
2 forimitoqiprint"Escsifi le no. "isimput"gEnter job no. "in(i)
3 input" radown load \(f\) ilename "; fos (i) inext

5 input"Rre data correct "; q\$: ifocs"y"thenia
6 ifqstz"n"thens
7 gotos
8 input"Which no. is urong ":a
9 imput"Job no. "gn(a) : input"Fi lename "; f\$(a):goto4
10 dopen 1, "efetsas", do, wsprintw 1, a

\section*{PLOTSAS}

```

2 open1,6:e\$=chr $(27):goto?
3 input#2, as:ifrights(as,1)m"!"then21
4 if lefts(25,2)="LB" thengoto22
5 z=len(as):ifright*(at,1)="&"thenas=left$(as,z-1)+"g"
6 print|1,a*;:q0to3
6 print"1,at::soto3 (GRAPH Fi lename";m%:print
7 input"\#EEnter SAS/GRAPH Fi lename";ms:print
9 ifq=1 thendopen\#2,(m)
10 goto?
11 ifds=62thenprint" "mer"ds%:de lose|2:goto15

```


```

14 print"1,es".i400;0;17:"e5".n;19:":goto3
15 input"gWould you like a disk directory ";z$:ifleft$(z*,1)=|"y"then18
16 if left\$ (z$,1)="n"then>
1 7 \text { gotol5}
18 input"Which disk drive I O or 1 I ":q
19 print"2Remember <NSPACEBARIN stops the listing8""i ifq"0thendirectoryd0:goto?
20 ifq=1 thendirectorydl:goto7
21 z=len(as):print#1, lefts(at,z-1) sdc lose#2:c lose1 :goto28
22 b$="":zalen(as):fori=3toz:c$mmid$(as,i,1)
23 iff\&="\&"thenc$m""
24 ifc$>chr$(64) andc$(chr$(91)thenb=asc(c$)+32:c$=chr$(b)
25 bsmbs+cs :next

```

```

27 print*1,a\$;:goto3
28 input"cucontinue (y/n) "ga|:ifa\xi="y"thenrun
29 ifas="n"thenend
30 goto28

```

\section*{APPENDIX B. CLARIFICATION ADDITIONS}

\begin{abstract}
The items within this appendix are added to this publication for clarification purposes since it was necessary to omit the information from the referent publication because of page limitations.

Figures 1, 2, 3 and 4 show the particle size distributions for the lignite sluriy, red mud, phosphate slime and kaolinite slurry, respectively.
\end{abstract}

Figure 1. Lignite slurry particle size distribution

Figure 2. Red mud particle size distribution

Figure 3. Phosphate slime particle size distribution

Figure 4. Kaolinite slurry particle size distribution```

[^0]: $1_{\text {Predoctoral Research Associate, Ames Laboratory. }}$
 ${ }^{2}$ Professor of Civil Engineering.

[^1]: ${ }^{2}$ See Figure 1 of Part II．

[^2]: ${ }^{3}$ See Appendix B for particle size distribution.

[^3]: ${ }^{1}$ Predoctoral Research Associate, Ames Laboratory.

[^4]: ${ }^{1}$ CBM and PET are trademarks of Commodore Business Machines, Inc.

[^5]: ${ }^{1}$ Predoctoral Research Associate, Ames Laboratory.
 ${ }^{2}$ Professor of Civil Engineering.

[^6]: 1 soto57
 2 print制1, chr $\$(13)$ chr $\$(7)$:fork=1to120 inext:return

 5 ifc<ch theng $=12-c h+c$: gosub9 sgoto3
 6 gotol6
 7 form=0to199:next :return
 8 printtab(22)" Mureturn
 9 fori=1 tog: gosub2 :next:return

 12 a7=int(a/2):ama-a7*2:a8=int(a):return

 14 iftm<i3thentm=tm+1440
 15 return
 16 fx=0: $2=0$: gosub 13 : tretm
 17 printi" 1 , Chr $\$(9)$: gosub 7 : inpurt 1, af
 18 ifa\$=""andz(5thenz"z+1 sprint"1, chr $\$(7)$:gotol?
 19 ifa\$=" "andz=35thena=0: $f x=1$:90to21
 20 amasc(as)

 22 print 1, chr $\$(10):$ gosubl:input 1 , as
 23 ifas="" andz<5 thenzmz+1 :90to 22
 24 ifafm" " andz=>5thena=0:fx=1 1 goto26
 25 a=asc(as)

 27 print 1, Chr $\$(11)$:
 28 measc (as) 590 suio10:mintm1, chr $\$(7)$

 30 return

 36 umasc (as):u1=(int((u

 $40 \mathrm{~s} 1=(\operatorname{int}((s 1-w 1) \operatorname{lin} 10+.5)) / 10: 22 \$=5 \operatorname{tr} \$(51):$ meturn

 46 n lan $1+1$:ca0 sgosub3 i ifilabthenil=tr

 48 i 401 15"n"thenc=4:90sub3: gosub44
 49 gosub37:print"

 52 gosubs :pr inttab (28-len(z6\$)) 11 " " $^{\prime \prime}$: ift8くe 1 then 46

 55 print" Pressurized Electroosmotic Dewatering "

[^7]: 1 goto58
 2 print*1, chr $\$(13) c h r \(7) : fork=itol20:next ireturn
 printw1, chr $\$(11):$ gosub? : input 1, as:printw1, chr $\$(7):$ ifas=" "then 3

 ifc<ch theng=12-ch+c sgosub9:goto3
 goto16
 forw=0tol 99 :next areturn
 8 printtab(22)"
 9 fori=1 tog: grosub2 :nextireturn

 a7=int(a/2):ama-a7*2:a8mint(a) :return

 4 iftm<i2thentm $=t m+1440$
 return
 $f x=0: z=0$: gosubl 13 : trmetm

 ifat=""andz(5thenz=z+1:1printel, chrs(7):goto17

 a=asc(as)

 23 ifasm"nandz<5 thenz=z+1 2 goto 22
 24 ifat=" "andz=>5thena=0: $f x \times 1$:goto26
 25 amasc(as)

 28 axasc(af):gosuble:printmi, chr $\$(7)$

 36 return

 34 gosub13:t8=(int($\left(t_{m}-12\right)$) $\left.180+.5\right)$)/100
 35 printw1, chr\$(108)chr\$(8):imputw1, a\$:print*1,chr-\$(7):ifasm""then35

 38 mint $3, s 2 ; c \$; t 5 ; c \$; 12 ; c \$; t 6 ; c \$ 2 C 2 ; c \$; t 7 ; c \$; \cup 2 ; c \$; t 8 ; c \$; p 2 ; c \$; t 9 ;$ return
 39 t5=(int($(t r-i 2)$ (100+.5))/100:rd=rd+i7:21

 43 la l+rdidrdif-7. 0882956e-9+rdab.00033299+. 35580661
 $4412=($ int $($ (i4-i) $10100+.5\rangle) / 100: 265=5 \operatorname{tr} 5(12)$ sreturn

 $47 \mathrm{mr}=n \mathrm{n}+1 \mathrm{sc=2:gosub3:ifi2=8} \mathrm{theni2=tr}$
 48 gosub39:c=3:gosub3:gosub42:ifu2s=" n " thengosub31
 49 ifp2 $5=$ " n " thenc $=5$: gosub3 3 gosub 45

 53 gosub8:printtab(28-len(z65)) 12"El": ift5<e2tthen47

 56 print" $\$$ Pressurized Electroosmotic Dewatering "

[^8]: 57 print" (I";:fori=1to40:print"M "; enext:printireturn
 58 dopen\#4, "dump", de: inputw4,r $\$$, dr, i2,i4,i7,i8,i8,s2, 2, , $2,15, t 5, t 6, t 7, t 8, t 9$

 61 ifdr=0thendopen 3 , ($r s 5$), de, wiappend" 5 ,"tests", do
 62 ifdr=1 thendopen"3, (rss), di,wiappendi"5,"tests", di

 67 getas: $i f$ as $=1$ " thent 67
 68 ifasm"S"then 0
 68 ifast" 69 goto67
 69 goto6?

[^9]: 1 g10to79
 2 print 1，chr事（13）chr $\$(7):$ fork $=1$ to 150 inext areturn

 ifc Cchtheng：12－ch＋c ：gosub $10:$ groto3
 6 gotol7
 foru＝0to129 ：next：return

 9 primitab（14）＂＂tab（27）＊atiseturn
 10 for $i=1$ tog：gosub2：nextireturn

 13 m＝int（a／2）：a＝a－aア亩2：a8＝int（a）：return

 15 iftan＜i 1 thentanment 144θ
 16 returm
 7 fx＝0：z＝0：gosub14：triatm

 19 ifa\＄＝＂＂andz＜5thenz＝z＋1 zprintw1，chr $\$(7)$ ：qotol8
 20 ifas＝＂＂andz＝35 thenaze i f $x=1$ igoto22
 21 amasc（as）

 3 printw 1 ，chr $\$(10)$ ：gosub？：input 1 ，as
 ifas＝＂＂ardz＜5thanz＝z＋1；890to23
 ifas＝＂＂andz＝＞5thenam0：$f \times=1:$ goto27
 m＝asc（as）

 amasc（as）：sosubli sprint 1，chr $\$(7)$

 return

 1 gosub14：t8＝（int（（tm－i2）東100＋．5））／100

 4 u2＝（int（u2官10＋．5））10：z\＄（10）＝str $\$(u 2)$ ：return

 $5552=(\operatorname{int}((52-42+\operatorname{ar})(10+, 5)) / 1 \theta: z \$(8)=s t r y(s 2)$ ireturn

[^10]: 117 ifz\$く>"y"then114

 119 ifzr=0thenzz=0:gotol03
 120 if $z 5=" y$ "thenzz=1 :gotole3
 121 ifz 5 mm "n"thenzz*0:gotole3
 122 gotol18
 123 clr:d load"summary", de:run
 124 dopen"4, "dump", d0:open1,4:open2,4,2:open3,4,1:k=1:1\$x"":r\$="":zdz0
 125 inputw $4,15, d l, i 1, i 3, i 5, i 6, i 9, s 1, v(k), p(k), 1, t \theta, t 1, t 2, t 3, t 4, c, c h, v 15$
 126 input $4,1 p 1 \$, a 5, a, a 1,22,23,24,25,26,27,28, e(k), w(k), x i, d s(k): i f s t=64$ then 129
 $127 k=2=i n p u t{ }^{2} 4, r \$, d r, i 2, i 4, i 7, i 8, i 8, s 2, u(k), p(k), i, t 5, t 6, t 7, t 8, t 9, c, c h, u 2 \$$
 128 inpurt $4, p 2 \$, a s, a, 21,22,23,24,25,-25, a 7,28, e(k), w(k), \times r, d s(k)$

 $131 k=2: 1(k)=(i n t(i 4 * 108+.5)) / 100: a(k)=(i n t(i>100+.5)) / 180$

 134 ifx l3.737thencem2:cw=2:cle3:cpe5

 136 print 3 , l+5 lfs"Initial voltage"s\$u(k)"प" $1+\$$ lf\$

 138 print*" 3 , "Initial pressure"ssp(k)"psi"lf\$lf\$

 140 print\#3,"Elapsed Time"ste(k)"min"lf\$lf\$

 142 print"\#3,"Empty depth"s\$l(k)"cm"lf\$lf\$
 143 printw3,"Initial water added "stwu(k)" g" 1 f $\$ 1$ lf
 144 print 1 3, "Y/E balance adjustment:" If $\$$ if $\$$
 145 printw2, tab (31) "aaadaas 9 a $59999.99 "$

 147 printw3,"Channel"ssc l"m"ssb(k) lf\$lf\$

 149 printill, tab(24)"Test conductod in cell no. "ce:ppintin,ff
 150 ifr $s={ }^{\prime \prime}$ "orzdxithen 152

 152 close1:c lose2:c lose3:return
 153 data5,10,18,10,6,0

